1
|
Liu W, Rask-Andersen H. Na/K-ATPase Gene Expression in the Human Cochlea: A Study Using mRNA in situ Hybridization and Super-Resolution Structured Illumination Microscopy. Front Mol Neurosci 2022; 15:857216. [PMID: 35431803 PMCID: PMC9009265 DOI: 10.3389/fnmol.2022.857216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background The pervasive Na/K-ATPase pump is highly expressed in the human cochlea and is involved in the generation of the endocochlear potential as well as auditory nerve signaling and relay. Its distribution, molecular organization and gene regulation are essential to establish to better understand inner ear function and disease. Here, we analyzed the expression and distribution of the ATP1A1, ATP1B1, and ATP1A3 gene transcripts encoding the Na/K-ATPase α1, α3, and β1 isoforms in different domains of the human cochlea using RNA in situ hybridization. Materials and Methods Archival paraformaldehyde-fixed sections derived from surgically obtained human cochleae were used to label single mRNA gene transcripts using the highly sensitive multiplex RNAscope® technique. Localization of gene transcripts was performed by super-resolution structured illumination microscopy (SR-SIM) using fluorescent-tagged probes. GJB6 encoding of the protein connexin30 served as an additional control. Results Single mRNA gene transcripts were seen as brightly stained puncta. Positive and negative controls verified the specificity of the labeling. ATP1A1 and ATP1B1 gene transcripts were demonstrated in the organ of Corti, including the hair and supporting cells. In the stria vascularis, these transcripts were solely expressed in the marginal cells. A large number of ATP1B1 gene transcripts were found in the spiral ganglion cell soma, outer sulcus, root cells, and type II fibrocytes. The ATP1B1 and ATP1A3 gene transcripts were rarely detected in axons. Discussion Surgically obtained inner ear tissue can be used to identify single mRNA gene transcripts using high-resolution fluorescence microscopy after prompt formaldehyde fixation and chelate decalcification. A large number of Na/K-ATPase gene transcripts were localized in selected areas of the cochlear wall epithelium, fibrocyte networks, and spiral ganglion, confirming the enzyme’s essential role for human cochlear function.
Collapse
|
2
|
ExplantAnalyzer: An advanced automated neurite outgrowth analysis evaluated by means of organotypic auditory neuron explant cultures. J Neurosci Methods 2021; 363:109341. [PMID: 34474047 DOI: 10.1016/j.jneumeth.2021.109341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuronal outgrowth assays using organotypic explant cultures are commonly utilized to study neuroregenerative and -protective effects of drugs such as neurotrophins. While this approach offers higher organized tissue compared to single cell cultures and less experimental effort than in-vivo studies, quantitative evaluation of the neuronal network is often time consuming. Thus, we developed ExplantAnlayzer, a time-saving high-throughput evaluation method, yielding numerous metrics to objectively describe neuronal outgrowth. NEW METHOD Spiral ganglion explants were cultured in 24-well plates, mechanically fixed in a collagen matrix and immunolabeled against beta-III-tubulin. The explants were imaged using a fluorescent tile-scan microscope and resulting images were stitched. The evaluation was developed as an open-source MATLAB routine and involves several image processing steps, including adaptive thresholding. The neurite network was eventually converted to a graph to track neurites from their terminals back to the explant body. COMPARISON WITH EXISTING METHOD(S) We compared ExplantAnlayzer quantitatively and qualitatively to common existing methods, such as Sholl analyses and manual fiber tracing, using representative explant images. ExplantAnlayzer is able to achieve similar and as detailed results as manual tracing while decreasing manual interaction and required time dramatically. RESULTS After an initial setup phase, the explant images could be batch-processed altogether. Bright bundles as well as faint fibers were reliably detected. Several metrics describing the outgrowth morphology, including total outgrowth, neurite numbers and length estimations, as well as their growth directions, were computed. CONCLUSIONS ExplantAnalyzer is a time-saving and objective method for an in-depth evaluation of organotypic explant outgrowth.
Collapse
|
3
|
Bas E, Anwar MR, Goncalves S, Dinh CT, Bracho OR, Chiossone JA, Van De Water TR. Laminin-coated electrodes improve cochlear implant function and post-insertion neuronal survival. Neuroscience 2019; 410:97-107. [PMID: 31059743 DOI: 10.1016/j.neuroscience.2019.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The benefits of Cochlear implant (CI) technology depend among other factors on the proximity of the electrode array to the spiral ganglion neurons. Laminin, a component of the extracellular matrix, regulates Schwann cell proliferation and survival as well as reorganization of actin fibers within their cytoskeleton, which is necessary for myelination of peripheral axons. In this study we explore the effectiveness of laminin-coated electrodes in promoting neuritic outgrowth from auditory neurons towards the electrode array and the ability to reduce acoustic and electric auditory brainstem response (i.e. aABR and eABR) thresholds. In vitro: Schwann cells and neurites are attracted towards laminin-coated surfaces with longer neuritic processes in laminin-coated dishes compared to uncoated dishes. In vivo: Animals implanted with laminin-coated electrodes experience significant decreases in eABR and aABR thresholds at selected frequencies compared to the results from the uncoated electrodes group. At 1 month post implantation there were a greater number of spiral ganglion neurons and neuritic processes projecting into the scala tympani of animals implanted with laminin-coated electrodes compared to animals with uncoated electrodes. These data suggest that Schwann cells are attracted towards laminin-coated electrodes and promote neuritic outgrowth/ guidance and promote the survival of spiral ganglion neurons following electrode insertion trauma.
Collapse
Affiliation(s)
- Esperanza Bas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| | - Mir R Anwar
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Olena R Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Juan A Chiossone
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Thomas R Van De Water
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
4
|
Radotić V, Braeken D, Drviš P, Mattotti M, Kovačić D. Advantageous environment of micro-patterned, high-density complementary metal-oxide-semiconductor electrode array for spiral ganglion neurons cultured in vitro. Sci Rep 2018; 8:7446. [PMID: 29748613 PMCID: PMC5945660 DOI: 10.1038/s41598-018-25814-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
This study investigated micro-patterned, high-density complementary metal–oxide–semiconductor (CMOS) electrode array to be used as biologically permissive environment for organization, guidance and electrical stimulation of spiral ganglion neurons (SGN). SGNs extracted and isolated from cochleae of P5-P7 rat pups and adult guinea pigs were cultured 1, 4 and 7 days in vitro on glass coverslips (control) and CMOS electrode array. The cultures were analyzed visually and immunohistochemically for SGN presence, outgrowth, neurite alignment, neurite length, neurite asymmetry as well as the contact of a neuronal soma and neurites with the micro-electrodes. Our findings indicate that topographical environment of CMOS chip with micro-patterned pillars enhanced growth, survival, morphology, neural orientation and alignment of SGNs in vitro compared to control. Smaller spacing (0.8–1.6 µm) between protruding pillars on CMOS led SGNs to develop structured and guided neurites oriented along three topographical axes separated by 60°. We found morphological basis for positioning of the micro-electrodes on the chip that was appropriate for direct contact of SGNs with them. This configuration allowed CMOS electrode array to electrically stimulate the SGN whose responses were observed with live Fluo 4 calcium imaging.
Collapse
Affiliation(s)
- Viktorija Radotić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia.,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia.,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Dries Braeken
- Cell and Tissue Technologies group, Life Science Technologies department, Imec, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Petar Drviš
- University Hospital Centre Split, Department of Otorhinolaryngology & Head and Neck Surgery, Spinčićeva 1, HR-21000, Split, Croatia
| | - Marta Mattotti
- Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, Department of Physics, University of Split, Faculty of Science, R.Boškovića 33, HR-21000, Split, Croatia. .,The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000, Split, Croatia. .,Speech and Hearing Research Laboratory, University of Split, School of Medicine, Šoltanska 2, HR-21000, Split, Croatia.
| |
Collapse
|
5
|
Li H, Edin F, Hayashi H, Gudjonsson O, Danckwardt-Lillieström N, Engqvist H, Rask-Andersen H, Xia W. Guided growth of auditory neurons: Bioactive particles towards gapless neural - electrode interface. Biomaterials 2016; 122:1-9. [PMID: 28107660 DOI: 10.1016/j.biomaterials.2016.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/26/2023]
Abstract
Cochlear implant (CI) is a successful device to restore hearing. Despite continuous development, frequency discrimination is poor in CI users due to an anatomical gap between the auditory neurons and CI electrode causing current spread and unspecific neural stimulation. One strategy to close this anatomical gap is guiding the growth of neuron dendrites closer to CI electrodes through targeted slow release of neurotrophins. Biodegradable calcium phosphate hollow nanospheres (CPHSs) were produced and their capacity for uptake and release of neurotrophins investigated using 125I-conjugated glia cell line-derived neurotrophic factor (GDNF). The CPHSs were coated onto CI electrodes and loaded with neurotrophins. Axon guidance effect of slow-released neurotrophins from the CPHSs was studied in an in vitro 3D culture model. CPHS coating bound and released GDNF with an association rate constant 6.3 × 103 M-1s-1 and dissociation rate 2.6 × 10-5 s-1, respectively. Neurites from human vestibulocochlear ganglion explants found and established physical contact with the GDNF-loaded CPHS coating on the CI electrodes placed 0.7 mm away. Our results suggest that neurotrophin delivery through CPHS coating is a plausible way to close the anatomical gap between auditory neurons and electrodes. By overcoming this gap, selective neural activation and the fine hearing for CI users become possible.
Collapse
Affiliation(s)
- Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Håkan Engqvist
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Wei Xia
- Applied Material Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Edin F, Liu W, Li H, Atturo F, Magnusson PU, Rask-Andersen H. 3-D gel culture and time-lapse video microscopy of the human vestibular nerve. Acta Otolaryngol 2014; 134:1211-8. [PMID: 25399879 DOI: 10.3109/00016489.2014.946536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONCLUSIONS Human inner ear neurons have an innate regenerative capacity and can be cultured in vitro in a 3-D gel. The culture technique is valuable for experimental investigations of human inner ear neuron signaling and regeneration. OBJECTIVES To establish a new in vitro model to study human inner ear nerve signaling and regeneration. METHODS Human superior vestibular ganglion (SVG) was harvested during translabyrinthine surgery for removal of vestibular schwannoma. After dissection tissue explants were embedded and cultured in a laminin-based 3-D matrix (Matrigel™). 3-D growth cone (GC) expansion was analyzed using time-lapse video microscopy (TLVM). Neural marker expression was appraised using immunocytochemistry with fluorescence and laser confocal microscopy. RESULTS Tissue explants from adult human SVG could be cultured in 3-D in a gel, indicating an innate potential for regeneration. Cultured GCs were found to expand dynamically in the gel. Growth cone expansion and axonal Schwann cell alignment were documented using TLVM. Neurons were identified morphologically and through immunohistochemical staining.
Collapse
Affiliation(s)
- Fredrik Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital , Uppsala , Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Rask-Andersen H, Erixon E, Kinnefors A, Löwenheim H, Schrott-Fischer A, Liu W. Anatomy of the human cochlea – implications for cochlear implantation. Cochlear Implants Int 2013; 12 Suppl 1:S8-13. [DOI: 10.1179/146701011x13001035752174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Weigel S, Osterwalder T, Tobler U, Yao L, Wiesli M, Lehnert T, Pandit A, Bruinink A. Surface microstructures on planar substrates and textile fibers guide neurite outgrowth: a scaffold solution to push limits of critical nerve defect regeneration? PLoS One 2012; 7:e50714. [PMID: 23251379 PMCID: PMC3520951 DOI: 10.1371/journal.pone.0050714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/23/2012] [Indexed: 01/30/2023] Open
Abstract
The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can't be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H) coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H) proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces.
Collapse
Affiliation(s)
- Stefan Weigel
- MaTisMed, Materials-Biology Interactions Lab, EMPA Materials Science and Technology, St. Gallen, Switzerland
- Technische Universität München, Zoology, Freising-Weihenstephan, Germany
| | - Thomas Osterwalder
- MaTisMed, Materials-Biology Interactions Lab, EMPA Materials Science and Technology, St. Gallen, Switzerland
| | - Ursina Tobler
- MaTisMed, Materials-Biology Interactions Lab, EMPA Materials Science and Technology, St. Gallen, Switzerland
| | - Li Yao
- National Center for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- Department of Biological Sciences, Wichita State University, Wichita, United States of America
| | - Manuel Wiesli
- MaTisMed, Materials-Biology Interactions Lab, EMPA Materials Science and Technology, St. Gallen, Switzerland
| | - Thomas Lehnert
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Microsystems 2, Lausanne, Switzerland
| | - Abhay Pandit
- National Center for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Arie Bruinink
- MaTisMed, Materials-Biology Interactions Lab, EMPA Materials Science and Technology, St. Gallen, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Hill GW, Purcell EK, Liu L, Velkey JM, Altschuler RA, Duncan RK. Netrin-1-mediated axon guidance in mouse embryonic stem cells overexpressing neurogenin-1. Stem Cells Dev 2012; 21:2827-37. [PMID: 22512716 DOI: 10.1089/scd.2011.0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stem cell therapy holds great promise for treating neurodegenerative disease, but major barriers to effective therapeutic strategies remain. A complete understanding of the derived phenotype is required for predicting cell response once introduced into the host tissue. We sought to identify major axonal guidance cues present in neurons derived from the transient overexpression of neurogenin-1 (Neurog1) in mouse embryonic stem cells (ESCs). Neurog1 upregulated the netrin-1 axon guidance receptors DCC (deleted in colorectal cancer) and neogenin (NEO1). Quantitative polymerase chain reaction results showed a 2-fold increase in NEO1 mRNA and a 36-fold increase in DCC mRNA in Neurog1-induced compared with control ESCs. Immunohistochemistry indicated that DCC was primarily expressed on cells positive for the neuronal marker TUJ1. DCC was preferentially localized to the cell soma and growth-cones of induced neurons. In contrast, NEO1 expression showed less specificity, labeling both TUJ1-positive and TUJ1-negative cells as well as uninduced control cells. Axonal outgrowth was directed preferentially toward aggregates of HEK293 cells secreting a recombinant active fragment of netrin-1. These data indicate that DCC and NEO1 are downstream products of Neurog1 and may guide the integration of Neurog1-induced ESCs with target cells secreting netrin-1. Differential expression profiles for netrin receptors could indicate different roles for this guidance cue on neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Gerhard W Hill
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zhang W, Zhang Y, Sood R, Ranjan S, Surovtseva E, Ahmad A, Kinnunen PKJ, Pyykkö I, Zou J. Visualization of intracellular trafficking of Math1 protein in different cell types with a newly-constructed nonviral gene delivery plasmid. J Gene Med 2011; 13:134-44. [PMID: 21308898 DOI: 10.1002/jgm.1537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In recent years, Math1 gene therapy was indicated to be the future therapy for deafness in combination with other growth factors. However, Math1 delivery using adenovirus-mediated gene delivery or electroporation was impractical. The contribution of Math1 in the combined procedure was not clearly elucidated using the existing plasmids. Nonviral gene delivery vectors are expected to be extremely safe and convenient. The present study aimed to construct the pCDNA6.2/C-EmGFP-Math1 plasmid and evaluate its transfection efficiency and intracellular trafficking of Math1 protein corresponding to transcription regulation function. METHODS After constructing the pCDNA6.2/C-EmGFP-Math1 expression plasmid, the plasmid was transfected into different cell lines and primary cochlear cells using Lipofectamine 2000. Transfection efficiencies of the plasmid were evaluated. Transfection efficiencies using liposome nanoparticles containing Math1 plasmid were also assessed. Intracellular trafficking of Math1 was monitored using confocal microscopy. RESULTS Different cell types can be transfected with high transfection efficiencies by the pcDNA6.2/C-EmGFP-Math1 plasmid using Lipofectamine 2000. Liposome nanoparticles containing the Math1 plasmid expressed the gene with variable efficiencies, depending on the particle size, surface charge and PEGylation status. Unique intracellular trafficking of Math1 was demonstrated in different cell types. CONCLUSIONS The newly-constructed plasmid pcDNA6.2/C-EmGFP-Math1 was suitable for nonviral gene delivery of Math1. Unique intracellular trafficking of Math1 with dynamics from the cytoplasm to the nucleus was demonstrated. The modification of mesenchymal stem cells by Math1 gene delivery and by brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor treatments can potentially be applied to cell replacement for the treatment of cochlear spiral ganglion cell loss in deafness.
Collapse
Affiliation(s)
- Weikai Zhang
- Department of Otolaryngology, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
El Seady R, Huisman MA, Löwik CWGM, Frijns JHM. Uncomplicated differentiation of stem cells into bipolar neurons and myelinating glia. Biochem Biophys Res Commun 2008; 376:358-62. [PMID: 18789899 DOI: 10.1016/j.bbrc.2008.08.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 08/28/2008] [Indexed: 02/07/2023]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs), derived from the bulge of hair follicles, appear to be promising donor stem cell candidates. In the current work, EPI-NCSCs were harvested from rodents and humans. Isolation procedures revealed high levels of nestin-positive neural stem cells and the percentage of human neural stem cells (95+/-0.6%) is even higher than the percentage found in cultures of hair follicles from rodents (90+/-0.9%). Furthermore, differentiation of EPI-NCSCs into bipolar neurons, myelinating Schwann cells and oligodendrocytes occurred by applying a simple and straightforward method. Bipolar neurons could be obtained by culturing on a collagen matrix and are of great interest for auditory neuron regeneration since auditory neurons are bipolar. We propose that this type of stem cells, would make an excellent model for autologous transplantation and offers great potential for neural regeneration in diseases, such as Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Ragad El Seady
- Department of Otorhinolaryngology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | |
Collapse
|
12
|
Xie J, Chen L, Varadan VK, Yancey J, Srivatsan M. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. NANOTECHNOLOGY 2008; 19:105101. [PMID: 21817692 DOI: 10.1088/0957-4484/19/10/105101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.
Collapse
Affiliation(s)
- Jining Xie
- Nanomaterials and Nanotubes Research Laboratory, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
13
|
Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:125-81. [PMID: 18544498 DOI: 10.1016/s1937-6448(08)00603-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful axonal outgrowth in the adult central nervous system (CNS) is central to the process of nerve regeneration and brain repair. To date, much of the knowledge on axonal guidance and outgrowth comes from studies on neuritogenesis and patterning during development where distal growth cones constantly sample the local environment and respond to specific physical and trophic influences. Opposing permissive (e.g., growth factors) and hostile signals (e.g., repulsive cues) are processed, leading to growth cone remodelling, and a concomitant restructuring of the cytoskeleton, thereby permitting pioneering extension and a potential for establishing synaptic connections. Repulsive cues, such as semaphorins, ephrins and myelin-secreted inhibitory glycoproteins, act through their respective receptors to affect the collapsing or turning of growth cones via several pathways, such as the Rho GTPases signalling which precipitates the cytoskeletal changes. One of the direct modulators of microtubules is the family of brain-specific proteins, collapsin response mediator protein (CRMP). Exciting evidence emerged recently that cleavage of CRMPs in response to injury-activated proteases, such as calpain, signals axonal retraction and neuronal death in adult post-mitotic neurons, while blocking this signal transduction prevents axonal retraction and death following excitotoxic insult and cerebral ischemia. Regeneration is minimal in injured postnatal CNS, albeit the occurrence of some limited remodelling in areas where synaptic plasticity is prevalent. Frequently in the absence of axonal regeneration, there is not only an inevitable loss of functional connections, but also a loss of neurons, such as through the actions of dependence receptors. Deciphering the cues and signalling pathways of axonal guidance and outgrowth may hold the key to fully understanding nerve regeneration and brain repair, thereby opening the way for developing potential therapeutics.
Collapse
Affiliation(s)
- Sheng T Hou
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | | | | |
Collapse
|
14
|
Vieira M, Christensen BL, Wheeler BC, Feng AS, Kollmar R. Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice. Hear Res 2007; 230:17-23. [PMID: 17521837 DOI: 10.1016/j.heares.2007.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 11/27/2022]
Abstract
We have developed a reliable protocol for the serum-free dissociation and culture of spiral ganglion neurons from adult mice, an important animal model for patients with post-lingual hearing loss. Pilot experiments indicated that the viability of spiral ganglion cells in vitro depended critically on the use of Hibernate medium with B27 supplement. With an optimized protocol, we obtained 2 x 10(3) neurons immediately after dissociation, or about one-fifth of those present in the intact spiral ganglion. After four days in culture, 4% of the seeded neurons survived without any exogenous growth factors other than insulin. This yield was highly reproducible in five independent experiments and enabled us to measure systematically the numbers and lengths of the regenerating neurites. Furthermore, the survival rate compared well to the few published protocols for culturing adult spiral ganglion neurons from other species. Enhanced survival and neurite outgrowth upon the addition of brain-derived neurotrophic factor and leukemia inhibitory factor demonstrated that both are potent stimulants for damaged spiral ganglion neurons in adults. This responsiveness to exogenous growth factors suggested that our culture protocol will facilitate the screening of molecular compounds as potential treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Mauricio Vieira
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, MC-251, Urbana, IL, USA
| | | | | | | | | |
Collapse
|