1
|
Nykanen D, Stiffler H, Bay M, Goldie C, Chou S, Swalve N. The effects of cannabinoid agonism on auditory discrimination. Behav Pharmacol 2024:00008877-990000000-00117. [PMID: 39718041 DOI: 10.1097/fbp.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Recent evidence suggests that cannabis can impair simple auditory processes, and these alterations might be due to cannabinoid agonism. The effect of cannabinoid agonism on relatively complex processes such as auditory discrimination is unknown. The goal of this study was to examine the impact of WIN 55,212-2, a CB1 receptor and CB2 receptor agonism, on auditory discrimination using a go/no-go task. Twenty-two male and female Sprague-Dawley rats were initially trained to lever-press for sucrose to either a pure tone or white noise cue in a go/no-go paradigm, where rats were reinforced for lever-pressing during one cue and punished for lever-pressing during the other auditory cue. After criterion performance was met, rats were then injected with WIN 55,212-2 at 1.2 mg/kg, 3 mg/kg, or a corresponding vehicle (saline) and were tested on auditory discrimination. On day 3, active lever-pressing was higher in both the low- and high-dose WIN groups compared with the saline group. Overall lever-pressing decreased over time in the high-dose WIN 55,212-2 group. There were no effects of the drug on discrimination or errors, suggesting that cannabinoid agonism did not negatively affect auditory discrimination. This is the first study to examine the impact of cannabinoids on the discrimination of tones, finding that, contrary to previous research, the low and high doses of WIN 55,212-2 did not adversely impact auditory-linked behaviors.
Collapse
Affiliation(s)
| | | | - Merrick Bay
- Department of Psychology, Alma College, Alma, Michigan
| | | | - Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Natashia Swalve
- Department of Psychology, Grand Valley State University, Allendale, Michigan, USA
| |
Collapse
|
2
|
Searchfield G, Adhia D, Barde A, De Ridder D, Doborjeh M, Doborjeh Z, Goodey R, Maslin MRD, Sanders P, Smith PF, Zheng Y. A scoping review of tinnitus research undertaken by New Zealand researchers: Aotearoa-an international hotspot for tinnitus innovation and collaboration. J R Soc N Z 2024; 55:466-500. [PMID: 39989649 PMCID: PMC11841108 DOI: 10.1080/03036758.2024.2363424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 02/25/2025]
Abstract
Tinnitus is a very common oto-neurological disorder of the perception of sound when no sound is present. To improve understanding of the scope, strengths and weaknesses of New Zealand tinnitus research, a critical scoping review was undertaken. The aim was to help develop priorities for future research. A review of the literature was undertaken using a 6-stage scoping review framework of Scopus and Pub Med were searched in May 2023 with the combination of following key word [Tinnitus] and country of affiliation [New Zealand]. The search of PubMed resulted in 198 articles and that of Scopus 337 articles. After initial consideration of title relevance to the study (165 from PubMed and 196 from Scopus) removal of duplicates and after reading the articles and adding from references, 208 studies were chosen for charting of data. Nine themes were identified and described: A. Epidemiology; B. Models; C. Studies in animals; D. Mechanisms; E. Assessment and prognosis; F. Pharmacotherapy; G. Neuromodulation; H. Sensory therapies; I. Clinical practice. An urgent priority for future tinnitus research in NZ must be to address the absence of cultural and ethnic diversity in participants and consideration of traditional knowledge.
Collapse
Affiliation(s)
- Grant Searchfield
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Amit Barde
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zohreh Doborjeh
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | | | - Michael R. D. Maslin
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- School of Psychology, Speech and Hearing, The University of Canterbury, Canterbury, New Zealand
| | - Phil Sanders
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Paul F. Smith
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Ciralli B, Malfatti T, Lima TZ, Silva SRB, Cederroth CR, Leao KE. Alterations of auditory sensory gating in mice with noise-induced tinnitus treated with nicotine and cannabis extract. J Psychopharmacol 2023; 37:1116-1131. [PMID: 37837354 DOI: 10.1177/02698811231200879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Tinnitus is a phantom sound perception affecting both auditory and limbic structures. The mechanisms of tinnitus remain unclear and it is debatable whether tinnitus alters attention to sound and the ability to inhibit repetitive sounds, a phenomenon also known as auditory gating. Here we investigate if noise exposure interferes with auditory gating and whether natural extracts of cannabis or nicotine could improve auditory pre-attentional processing in noise-exposed mice. We used 22 male C57BL/6J mice divided into noise-exposed (exposed to a 9-11 kHz narrow band noise for 1 h) and sham (no sound during noise exposure) groups. Hearing thresholds were measured using auditory brainstem responses, and tinnitus-like behavior was assessed using Gap prepulse inhibition of acoustic startle. After noise exposure, mice were implanted with multi-electrodes in the dorsal hippocampus to assess auditory event-related potentials in response to paired clicks. The results showed that mice with tinnitus-like behavior displayed auditory gating of repetitive clicks, but with larger amplitudes and longer latencies of the N40 component of the aERP waveform. The combination of cannabis extract and nicotine improved the auditory gating ratio in noise-exposed mice without permanent hearing threshold shifts. Lastly, the longer latency of the N40 component appears due to an increased sensitivity to cannabis extract in noise-exposed mice compared to sham mice. The study suggests that the altered central plasticity in tinnitus is more sensitive to the combined actions on the cholinergic and the endocannabinoid systems. Overall, the findings contribute to a better understanding of pharmacological modulation of auditory sensory gating.
Collapse
Affiliation(s)
- Barbara Ciralli
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thawann Malfatti
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
| | - Thiago Z Lima
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Applied Mathematics and Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katarina E Leao
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
5
|
Mavedatnia D, Levin M, Lee JW, Hamour AF, Dizon K, Le T. Cannabis use amongst tinnitus patients: consumption patterns and attitudes. J Otolaryngol Head Neck Surg 2023; 52:19. [PMID: 36823672 PMCID: PMC9951523 DOI: 10.1186/s40463-022-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Tinnitus has a significant impact on quality of life and causes considerable psychological distress. Cannabis is known to modulate neuron hyperexcitability, provide protection against auditory damage, and has been used for treatment for many diseases which have physiological similarities with tinnitus. The objective of this study was to survey patients presenting with tinnitus regarding their perspectives and usage patterns of cannabis. METHODS Patients with a primary presenting complaint of tinnitus in a tertiary neuro-otology clinic completed a 18-item questionnaire assessing perception, attitudes, and cannabis usage patterns. RESULTS Forty five patients completed the survey (mean age: 54.5 years, 31 females and 14 males). Overall, 96% of patients reported that they would consider cannabis as treatment for their tinnitus. Patients considered cannabis use for auditory symptoms (91%), and symptoms related to their tinnitus, such as emotional complaints (60%), sleep disturbances (64%), and functional disturbances (56%). 36% of patients had previously used cannabis and 22% of patients reported cannabis use at the time of the study. 80% of patients that were actively using cannabis reported that it helped with tinnitus-related symptoms, such as dizziness, anxiety, bodily pain, and sleep disturbances. Most patients would prefer to use edibles (62%), tablet (58%) and cream (47%) formulations of cannabis. Patients were concerned about the cost (29%), potential physical health implications (53%) and psychosocial side effects (60%) of cannabis. Over half of patients learned about cannabis from a friend or family member and only 22% of patients learned about cannabis from a physician or nurse. CONCLUSION Cannabis use is common amongst patients with tinnitus and current users of cannabis reported that it helped with their symptoms. Most patients would consider its use as a potential treatment to alleviate their tinnitus-related symptoms and are interested in learning more regarding its use. By understanding how cannabis is perceived by tinnitus patients, healthcare providers can provide appropriate patient education.
Collapse
Affiliation(s)
- Dorsa Mavedatnia
- grid.28046.380000 0001 2182 2255Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Marc Levin
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Jong Wook Lee
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Amr F. Hamour
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Kaye Dizon
- grid.413104.30000 0000 9743 1587Sunnybrook Health Sciences Center, Toronto, ON Canada
| | - Trung Le
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Guerra J, Naidoo V, Cacabelos R. Potential effects of cannabinoids on audiovestibular function: A narrative review. Front Pharmacol 2022; 13:1010296. [PMID: 36605398 PMCID: PMC9807921 DOI: 10.3389/fphar.2022.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.
Collapse
Affiliation(s)
- Joaquin Guerra
- Neuro-Otolaryngology Unit, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain,*Correspondence: Joaquin Guerra,
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Corunna, Spain
| | - Ramon Cacabelos
- Genomic Medicine, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
7
|
Barth SW, Lehner MD, Dietz GPH, Schulze H. Pharmacologic treatments in preclinical tinnitus models with special focus on Ginkgo biloba leaf extract EGb 761®. Mol Cell Neurosci 2021; 116:103669. [PMID: 34560255 DOI: 10.1016/j.mcn.2021.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 02/09/2023] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of external acoustic stimuli. Frequent comorbidities or associated factors are depression, anxiety, concentration problems, insomnia, resignation, helplessness, headache, bruxism, or social isolation, just to name a few. Although many therapeutic approaches have already been tested with varying success, there still is no cure available for tinnitus. The search for an effective treatment has been hampered by the fact that the mechanisms of tinnitus development are still not fully understood, although several models are available and discussed in this review. Our review will give a brief overview about preclinical models, presenting the heterogeneity of tinnitus sub-types depending on the different inner ear and brain structures involved in tinnitus etiology and pathogenesis. Based on these models we introduce the different target structures and transmitter systems implicated in tinnitus development and provide an extensive overview on preclinical drug-based therapeutic approaches that have been explored in various animal models. As the special extract from Ginkgo biloba leaves EGb 761® has been the most widely tested drug in both non-clinical tinnitus models as well as in clinical trials, a special focus will be given to EGb 761®. The efficacy of terpene lactones, flavone glycosides and proanthocyanidines with their distinct contribution to the overall efficacy profile of the multi-constituent drug EGb 761® will be discussed.
Collapse
Affiliation(s)
- Stephan W Barth
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Martin D Lehner
- Department of Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Holger Schulze
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
9
|
Narwani V, Bourdillon A, Nalamada K, Manes RP, Hildrew DM. Does cannabis alleviate tinnitus? A review of the current literature. Laryngoscope Investig Otolaryngol 2020; 5:1147-1155. [PMID: 33364406 PMCID: PMC7752070 DOI: 10.1002/lio2.479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Endocannabinoid pathways have been proposed to affect the underlying pathophysiology of tinnitus. The aim of this study is to evaluate the scope and findings of existing literature on the relationship between cannabis and cannabinoid pathways and tinnitus. METHODS We conducted a review of animal, clinical and survey studies investigating the relationship between the use of cannabis-derived agents and tinnitus. Using pertinent keywords and MeSH terms on PubMed, relevant studies were identified, yielding four animal studies, two large cross-sectional survey studies, one clinical cross-over study, and one case report. RESULTS Animal studies revealed that cannabinoid receptor expression in the cochlear nucleus varied with tinnitus symptomatology and the use of cannabinoid agents either increased or had no effect on tinnitus-related behavior. Survey studies yielded conflicting results between cannabis use and tinnitus in the general population. Clinical data is largely lacking, although a small cohort study showed a dose-dependent relationship between tetrahydrocannabinol consumption and frequency of tinnitus episodes in patients receiving treatment for cancer. CONCLUSION While animal studies have revealed that cannabinoid receptors likely have a role in modulating auditory signaling, there is no compelling data either from animal or human studies for the use of cannabinoids to alleviate tinnitus. Further research is necessary to elucidate their precise role to guide development of therapeutic interventions. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Vishal Narwani
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | | | - Keerthana Nalamada
- Department of NeurologyUniversity of ConnecticutFarmingtonConnecticutUSA
| | - R. Peter Manes
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | - Douglas M. Hildrew
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
10
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Luetzenberg FS, Babu S, Seidman MD. Alternative Treatments of Tinnitus: Alternative Medicine. Otolaryngol Clin North Am 2020; 53:637-650. [PMID: 32362562 DOI: 10.1016/j.otc.2020.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
"Because Western medicine has remained largely unsuccessful at treating tinnitus symptoms, many physicians as well as patients have turned to alternative treatment options to decrease patients' suffering and improve their quality of life. Although research in complementary/integrative medicine continues to be scarce and inconclusive, studies are pointing toward the positive effects of acupuncture, herbal remedies, dietary supplements, antioxidants, melatonin, and hypnosis on tinnitus. Although the efficacies of these treatments are inconsistent and may depend on a patient's unique circumstances, studies acknowledge that each treatment is worth trying in light of the potential benefits while being both noninvasive and well tolerated."
Collapse
Affiliation(s)
- Friederike S Luetzenberg
- University of Central Florida College of Medicine, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA
| | - Seilesh Babu
- Department of Otology, Neurotology, & Skull Base Surgery, Michigan Ear Institute, Farmington Hills, MI 48334, USA; Ascension Macomb Otolaryngology Residency, 11800 East 12 Mile Road, Warren, MI 48093, USA; Department of Otolaryngology, Wayne State University, Detroit, MI, USA
| | - Michael D Seidman
- Otologic/Neurotologic/Skull Base Surgery; Wellness and Integrative Medicine; Advent Health (Celebration and South Campuses); Otolaryngology Head and Neck Surgery, University of Central Florida College of Medicine; AdventHealth Medical Group- Otolaryngology-Head and Neck Surgery, 410Celebration Place Suite 305, Celebration, FL 34747, USA.
| |
Collapse
|
12
|
Qian ZJ, Alyono JC. An association between marijuana use and tinnitus. Am J Otolaryngol 2020; 41:102314. [PMID: 31732310 DOI: 10.1016/j.amjoto.2019.102314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE While some advocates have argued for marijuana as a treatment for tinnitus, the relationship between marijuana use and tinnitus is unknown. The objective of this study was to evaluate associations between marijuana use and the prevalence, severity, and rate of occurrence of tinnitus. STUDY DESIGN Cross-sectional analysis of nationally representative data. SETTING National Health and Nutrition Examination Survey 2011-2012. SUBJECTS AND METHODS Statistical analysis was performed on data collected from 2705 non-institutionalized adults aged 20-69 who underwent audiometric testing and were administered questionnaires about hearing, drug use, current health status, and medical history. RESULTS The use of marijuana at least once per month for the previous 12 months was significantly associated with experiencing tinnitus during that 12-month month (X2(1) = 19.41, p < 0.001). Subjects who used marijuana were more likely to experience tinnitus after accounting for covariables including age, gender, audiometric hearing loss, noise exposure history, depression, anxiety, smoking, salicylate use, cardiovascular disease, hypertension, and diabetes (OR = 1.75, 95% CI 1.02-3.01, p = 0.043). There were no associations between the severity or frequency of tinnitus occurrence and the quantity or frequency of marijuana use. Use of other substances such as alcohol, cocaine, methamphetamine, and heroin was not associated with tinnitus. CONCLUSION Regular marijuana use is associated with prevalent tinnitus. However, no dose response between marijuana use and tinnitus was observed. The relationship between marijuana use and tinnitus is complex and is likely modulated by psychosocial factors.
Collapse
|
13
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Valentino WL, McKinnon BJ. What is the evidence for cannabis use in otolaryngology?: A narrative review. Am J Otolaryngol 2019; 40:770-775. [PMID: 31174932 DOI: 10.1016/j.amjoto.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Review of the English literature for all studies involving cannabis and Otolaryngology. METHODS PubMed was searched using a combination of the terms cannabis, marijuana, otolaryngology, hearing, tinnitus, vestibular, rhinology, sinusitis, laryngology, voice, airway, head and neck, head and neck cancer, facial trauma, spasm, pediatric otolaryngology, sleep medicine, obstructive sleep apnea, and other variations. Literature included in the review provided substantive research on cannabis in Otolaryngology. RESULTS Seventy-nine unique publications were found in the literature. The majority were published in the last decade and pertain to the subspecialty of Head and Neck; specifically, its association with incident cancers. A small number of studies exist that suggest cannabis may be a useful therapy for Otolaryngological patients suffering from blepharospasm, the effects of radiation, and the psychological sequelae of receiving a cancer diagnosis. CONCLUSION Further research is required to determine the potential therapeutic roles and adverse effects of cannabis on conditions related to Otolaryngology. This study serves the Otolaryngological researcher with the most current, comprehensive literature review for the exploration into possible projects to undertake.
Collapse
Affiliation(s)
| | - Brian J McKinnon
- Department of Otolaryngology - Head and Neck Surgery, Department of Neurosurgery, Drexel University College of Medicine, United States of America.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Recent enthusiasm for cannabinoid drugs for the treatment of chronic pain and some forms of epilepsy, raises the question of whether they could be useful for other disorders associated with abnormal neuronal activity in the brain, such as subjective tinnitus. Indeed, there is evidence to indicate that some tinnitus sufferers self-medicate using Cannabis. The aim of this review is to critically evaluate the available evidence relating to the effects of cannabinoids on tinnitus. RECENT FINDINGS Despite the fact that cannabinoids have been shown to decrease neuronal hyperactivity in many parts of the brain, the current evidence suggests that in auditory brain regions such as the dorsal cochlear nucleus, they have the potential to facilitate neuronal hyperactivity and exacerbate tinnitus. All of the available experimental evidence from animal studies suggests that cannabinoid CB1 receptor agonists will either have no effect on tinnitus or will worsen it. SUMMARY In our opinion, the use of the available cannabinoid drugs to alleviate tinnitus, based on their alleged efficacy for neuropathic pain conditions and some forms of epilepsy, is premature and not supported by the available evidence.
Collapse
|
17
|
Enhancement of Endocannabinoid-dependent Depolarization-induced Suppression of Excitation in Glycinergic Neurons by Prolonged Exposure to High Doses of Salicylate. Neuroscience 2018; 376:72-79. [DOI: 10.1016/j.neuroscience.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
|
18
|
Zuo H, Lei D, Sivaramakrishnan S, Howie B, Mulvany J, Bao J. An operant-based detection method for inferring tinnitus in mice. J Neurosci Methods 2017; 291:227-237. [DOI: 10.1016/j.jneumeth.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
|
19
|
Berger JI, Coomber B, Hill S, Alexander SPH, Owen W, Palmer AR, Wallace MN. Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hear Res 2017; 356:51-62. [PMID: 29108871 PMCID: PMC5714060 DOI: 10.1016/j.heares.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2′-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6–10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. CB1 agonist (ACEA) effects were assessed in awake guinea pigs following salicylate. Salicylate-induced decreases in brainstem response amplitudes were tempered by ACEA. Decreases in alpha band oscillations were not evident following salicylate + ACEA. ACEA did not eliminate salicylate-induced increases in cortical evoked potentials. ACEA failed to prevent or reverse salicylate- or noise-induced tinnitus behaviour.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Samantha Hill
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Steve P H Alexander
- School of Life Sciences, Medical School, The University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - William Owen
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Zugaib J, Leão RM. Inhibitors of oxidative and hydrolytic endocannabinoid degradation do not enhance depolarization-induced suppression of excitation on dorsal cochlear nucleus glycinergic neurons. Synapse 2017; 71. [DOI: 10.1002/syn.21954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- João Zugaib
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
- Research Group on the Dynamics of the Neuromusculoskeletal System, Bahiana School of Medicine and Public Health; Salvador Bahia Brazil
| | - Ricardo M. Leão
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
21
|
Pace E, Luo H, Bobian M, Panekkad A, Zhang X, Zhang H, Zhang J. A Conditioned Behavioral Paradigm for Assessing Onset and Lasting Tinnitus in Rats. PLoS One 2016; 11:e0166346. [PMID: 27835697 PMCID: PMC5105995 DOI: 10.1371/journal.pone.0166346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023] Open
Abstract
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Michael Bobian
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Ajay Panekkad
- Department of Electrical Engineering, Wayne State College of Engineering, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States of America
| | - Xueguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, Michigan 48202, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hwang JH, Chan YC. Expression of Dopamine Receptor 1A and Cannabinoid Receptor 1 Genes in the Cochlea and Brain after Salicylate-Induced Tinnitus. ORL J Otorhinolaryngol Relat Spec 2016; 78:268-275. [DOI: 10.1159/000449170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022]
|
23
|
Bal R, Ustundag Y, Bulut F, Demir CF, Bal A. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat. Arch Med Sci 2016; 12:208-15. [PMID: 26925138 PMCID: PMC4754382 DOI: 10.5114/aoms.2016.57597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. MATERIAL AND METHODS Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. RESULTS Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). CONCLUSIONS We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw.
Collapse
Affiliation(s)
- Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Yasemin Ustundag
- Department of Anatomy, Faculty of Veterinary, Firat University, Elazig, Turkey
| | - Funda Bulut
- Department of Medical Biology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Caner Feyzi Demir
- Department of Neurology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ali Bal
- Department of Plastic-Reconstructive and Esthetic Surgery, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
24
|
Smith PF, Zheng Y. Cannabinoids, cannabinoid receptors and tinnitus. Hear Res 2015; 332:210-216. [PMID: 26433054 DOI: 10.1016/j.heares.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/03/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022]
Abstract
One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse.
Collapse
Affiliation(s)
- Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand.
| | - Yiwen Zheng
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| |
Collapse
|
25
|
Zheng Y, Reid P, Smith PF. Cannabinoid CB1 Receptor Agonists Do Not Decrease, but may Increase Acoustic Trauma-Induced Tinnitus in Rats. Front Neurol 2015; 6:60. [PMID: 25852639 PMCID: PMC4364172 DOI: 10.3389/fneur.2015.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain, and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In this study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: (1) sham (i.e., no acoustic trauma) with vehicle treatment; (2) sham with drug treatment (i.e., delta-9-THC + CBD); (3) acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and (4) acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioral testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR) thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however, among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | - Peter Reid
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
26
|
Abstract
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.
Collapse
|
27
|
|
28
|
|