1
|
Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. J Assoc Res Otolaryngol 2021; 22:95-105. [PMID: 33507440 PMCID: PMC7943682 DOI: 10.1007/s10162-020-00781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Brett M. Colbert
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Eric Nisenbaum
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015 Paris, France
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Karl Russell Koehler
- Department of Otolaryngology-Head and Neck Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zheng-yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 USA
| | - Xue Z. Liu
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
2
|
Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020; 747:144677. [PMID: 32304785 PMCID: PMC7244213 DOI: 10.1016/j.gene.2020.144677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos L Green
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
4
|
Hain TC, Cherchi M, Yacovino DA. Bilateral Vestibular Weakness. Front Neurol 2018; 9:344. [PMID: 29904366 PMCID: PMC5990606 DOI: 10.3389/fneur.2018.00344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/30/2018] [Indexed: 02/02/2023] Open
Abstract
Bilateral vestibular weakness (BVW) is a rare cause of imbalance. Patients with BVW complain of oscillopsia. In approximately half of the patients with BVW, the cause remains undetermined; in the remainder, the most common etiology by far is gentamicin ototoxicity, followed by much rarer entities such as autoimmune inner ear disease, meningitis, bilateral Ménière’s disease, bilateral vestibular neuritis, and bilateral vestibular schwannomas. While a number of bedside tests may raise the suspicion of BVW, the diagnosis should be confirmed by rotatory chair testing. Treatment of BVW is largely supportive. Medications with the unintended effect of vestibular suppression should be avoided.
Collapse
Affiliation(s)
- Timothy C Hain
- Department of Otolaryngology, Northwestern University, Chicago, IL, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Chicago, IL, United States
| | - Marcello Cherchi
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
5
|
Dai C, Lehar M, Sun DQ, Rvt LS, Carey JP, MacLachlan T, Brough D, Staecker H, Della Santina AM, Hullar TE, Della Santina CC. Rhesus Cochlear and Vestibular Functions Are Preserved After Inner Ear Injection of Saline Volume Sufficient for Gene Therapy Delivery. J Assoc Res Otolaryngol 2017. [PMID: 28646272 DOI: 10.1007/s10162-017-0628-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 μL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 μL transmastoid/trans-round window injection. Group C received a 30 μL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 μL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.
Collapse
Affiliation(s)
- Chenkai Dai
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.
| | - Mohamed Lehar
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Daniel Q Sun
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Lani Swarthout Rvt
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - John P Carey
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Tim MacLachlan
- Novartis Institutes for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Doug Brough
- GenVec, 910 Clopper Rd #220n, Gaithersburg, MD, 20878, USA
| | - Hinrich Staecker
- Dept of Otolaryngology, Head & Neck Surgery, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Alexandra M Della Santina
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| | - Timothy E Hullar
- Department of Otolaryngology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.,Department of Audiology and Communication Sciences, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Charles C Della Santina
- Vestibular NeuroEngineering Lab, Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg Rm 830, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Judge PD, Janky KL, Barin K. Can the Video Head Impulse Test Define Severity of Bilateral Vestibular Hypofunction? Otol Neurotol 2017; 38:730-736. [PMID: 28178036 PMCID: PMC5749235 DOI: 10.1097/mao.0000000000001351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The objective of the study was to compare rotary chair and video head impulse test (vHIT) findings in patients with bilateral vestibular hypofunction (BVH) to determine whether vHIT can: 1) define severity of BVH and 2) accurately predict rotary chair findings in patients with BVH. STUDY DESIGN Retrospective chart review. SETTING Research hospital. PATIENTS Twenty subjects with bilateral vestibular hypofunction as assessed by rotary chair. INTERVENTION Rotary chair and vHIT. MAIN OUTCOME MEASURES The main outcome measures were rotary chair phase, gain, and symmetry and vHIT vestibulo-ocular reflex (VOR) gain. Rotary chair and vHIT results were assessed and subjects were stratified into groups according to the severity of their vestibular hypofunction. For rotary chair, subjects were classified as mild, moderate, or severe BVH. For vHIT, subjects were classified as normal, unilateral, or bilateral. RESULTS Average lateral canal vHIT VOR gain: 1) significantly increased as severity of BVH decreased, and 2) demonstrated a significant and positive, linear relationship with rotary chair gains. vHIT was in disagreement with rotary chair in the classification of five subjects, which could be due to right-left asymmetry of BVH. CONCLUSION vHIT can serve as an initial tool for identifying patients with BVH. Lower vHIT gains are consistent with having severe BVH. There was disagreement between vHIT and rotary chair, though not for any patients with severe BVH. Compared with rotary chair, the clinical gold standard for identifying BVH, vHIT possesses 100% sensitivity for excluding severe BVH when average vHIT gains are greater than 0.46.
Collapse
Affiliation(s)
- Paul D Judge
- *University of Nebraska Medical Center †Boys Town National Research Hospital, Omaha, Nebraska ‡The Ohio State University, Eye and Ear Institute, Columbus, Ohio
| | | | | |
Collapse
|
7
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
8
|
Ross AM, Rahmani S, Prieskorn DM, Dishman AF, Miller JM, Lahann J, Altschuler RA. Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following in vivo infusion. J Biomed Mater Res A 2016; 104:1510-22. [PMID: 26841263 DOI: 10.1002/jbm.a.35675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 01/12/2023]
Abstract
Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1510-1522, 2016.
Collapse
Affiliation(s)
- Astin M Ross
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109.,Kresge Hearing Research Institute, University of Michigan, Ann Arbor, 48109
| | - Sahar Rahmani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109.,Biointerfaces Institute, University of Michigan, Ann Arbor, 48109
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, 48109
| | - Acacia F Dishman
- Biointerfaces Institute, University of Michigan, Ann Arbor, 48109.,Department of Biophysics, University of Michigan, Ann Arbor, 48109
| | - Josef M Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, 48109
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109.,Biointerfaces Institute, University of Michigan, Ann Arbor, 48109.,Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109
| | | |
Collapse
|
9
|
Future advances. HANDBOOK OF CLINICAL NEUROLOGY 2015. [PMID: 25726297 DOI: 10.1016/b978-0-444-62630-1.00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Future advances in the auditory systems are difficult to predict, and only educated guesses are possible. It is expected that innovative technologies in the field of neuroscience will be applied to the auditory system. Optogenetics, Brainbow, and CLARITY will improve our knowledge of the working of neural auditory networks and the relationship between sound and language, providing a dynamic picture of the brain in action. CLARITY makes brain tissue transparent and offers a three-dimensional view of neural networks, which, combined with genetically labeling neurons with multiple, distinct colors (Optogenetics), will provide detailed information of the complex brain system. Molecular functional magnetic resonance imaging (MRI) will allow the study of neurotransmitters detectable by MRI and their function in the auditory pathways. The Human Connectome project will study the patterns of distributed brain activity that underlie virtually all aspects of cognition and behavior and determine if abnormalities in the distributed patterns of activity may result in hearing and behavior disorders. Similarly, the programs of Big Brain and ENIGMA will improve our understanding of auditory disorders. New stem-cell therapy and gene therapies therapy may bring about a partial restoration of hearing for impaired patients by inducing regeneration of cochlear hair cells.
Collapse
|
10
|
Staecker H, Schlecker C, Kraft S, Praetorius M, Hsu C, Brough DE. Optimizing atoh1-induced vestibular hair cell regeneration. Laryngoscope 2014; 124 Suppl 5:S1-S12. [PMID: 24938696 DOI: 10.1002/lary.24775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVES/HYPOTHESIS Determine the optimal design characteristics of an adenoviral (Ad) vector to deliver atoh1 and induce regeneration of vestibular hair cells. STUDY DESIGN Evaluation of a mouse model of intralabyrinthine gene delivery. Tissue culture of mouse and human macular organs. METHODS Macular organs from adult C57Bl/6 mice were treated with binding modified and alternate adenovectors expressing green fluorescent protein (gfp) or luciferase (L). Expression of marker genes was determined over time to determine vector transfection efficiency. The inner ear of adult mice was then injected with modified vectors. Expression of gfp and distribution of vector DNA was followed. Hearing and balance function was evaluated in normal animals to ensure safety of the novel vector designs. An optimized vector was identified and tested for its ability to induce hair cell regeneration in a mouse vestibulopathy model. Finally, this vector was tested for its ability to induce hair cell regeneration in human tissue. RESULTS Ad5 serotype-based vectors were identified as having a variety of different binding capacities for inner ear tissue. This makes it difficult to limit the dose of vector due to entry into nontargeted cells. Screening of rare adenovector serotypes demonstrated that Ad-based vectors were ideally suited for delivery to supporting cells; therefore, they were useful for hair cell regeneration studies. Utilization of an Ad28-based vector to deliver atoh1 to a mouse model of vestibular loss resulted in significant functional recovery of balance. This vector was also capable of transfecting human macular organs and inducing regeneration of human vestibular hair cells in vitro. CONCLUSIONS Improvement in vector design can lead to more specific cell-based delivery and reduction of nonspecific delivery of the trans gene, leading to the development of optimized molecular therapeutics to induce hair cell regeneration. LEVEL OF EVIDENCE N/A. Laryngoscope 124:S1-S12, 2014.
Collapse
Affiliation(s)
- Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Pyykkö I, Zou J, Zhang Y, Zhang W, Feng H, Kinnunen P. Nanoparticle based inner ear therapy. World J Otorhinolaryngol 2013; 3:114-133. [DOI: 10.5319/wjo.v3.i4.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/22/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Synthetic nanoparticles can be used to carry drugs, genes, small interfering RNA (siRNA) and growth factors into the inner ear, to repair, restore and induce cellular regeneration. Nanoparticles (NPs) have been developed which are targetable to selected tissue, traceable in vivo, and equipped with controlled drug/gene release. The NPs are coated with a ‘stealth’ layer, and decorated with targeting ligands, markers, transfection agents and endosomal escape peptides. As payloads, genes such as the BDNF-gene, Math1-gene and Prestin-gene have been constructed and delivered in vitro. Short-hairpin RNA has been used in vitro to silence the negative regulator of Math1, the inhibitors of differentiation and DNA binding. In order to facilitate the passage of cargo from the middle ear to the inner ear, the oval window transports gadolinium chelate more efficiently than the round window and is the key element in introducing therapeutic agents into the vestibule and cochlea. Depending upon the type of NPs, different migration and cellular internalization pathways are employed, and optimal carriers should be designed depending on the cargo. The use of NPs as drug/gene/siRNA carriers is fascinating and can also be used as an intraoperative adjunct to cochlear implantation to attract the peripheral processes of the cochlear nerve.
Collapse
|
13
|
Miwa T, Minoda R, Ise M, Yamada T, Yumoto E. Mouse otocyst transuterine gene transfer restores hearing in mice with connexin 30 deletion-associated hearing loss. Mol Ther 2013; 21:1142-50. [PMID: 23587925 DOI: 10.1038/mt.2013.62] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although numerous causative genes for hereditary hearing loss have been identified, there are no fundamental treatments for this condition. Herein, we describe a novel potential treatment for genetic hearing loss. Because mutations or deletions in the connexin (Cx) genes are common causes of profound congenital hearing loss in both humans and mice, we investigated whether gene supplementation therapy using the wild-type Cx gene could cure hearing loss. We first generated inner ear-specific connexin 30 (Cx30)-deficient mice via the transuterine transfer of Cx30-targeted short hairpin RNA (shRNA-Cx30) into otocysts. The inner ear-specific Cx30-deficient mice mimicked homozygous Cx30-deficient mice both histologically and physiologically. Subsequently, we cotransfected the shRNA-Cx30 and the wild-type Cx30 gene. The cotransfected mice exhibited Cx30 expression in the cochleae and displayed normal auditory functions. Next, we performed the transuterine transfer of the wild-type Cx30 gene into the otocysts of homozygous Cx30-deficient mice, thereby rescuing the lack of Cx30 expression in the cochleae and restoring auditory functioning. These results demonstrate that supplementation therapy with wild-type genes can restore postnatal auditory functioning. Moreover, this is the first report to show that Cx-related genetic hearing loss is treatable by in vivo gene therapy.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, Kumamoto City, Japan
| | | | | | | | | |
Collapse
|
14
|
Abstract
Animal studies on inner ear development, repair and regeneration provide understanding of molecular pathways that can be harnessed for treating inner ear disease. Use of transgenic mouse technology, in particular, has contributed knowledge of genes that regulate development of hair cells and innervation, and of molecular players that can induce regeneration, but this technology is not applicable for human treatment, for practical and ethical reasons. Therefore other means for influencing gene expression in the inner ear are needed. We describe several gene vectors useful for inner ear gene therapy and the practical aspects of introducing these vectors into the ear. We then review the progress toward using gene transfer for therapies in both auditory and balance systems, and discuss the technological milestones needed to advance to clinical application of these methods.
Collapse
Affiliation(s)
- Hideto Fukui
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | | |
Collapse
|
15
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Eshraghi AA, Nazarian R, Telischi FF, Rajguru SM, Truy E, Gupta C. The cochlear implant: historical aspects and future prospects. Anat Rec (Hoboken) 2012; 295:1967-80. [PMID: 23044644 DOI: 10.1002/ar.22580] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 02/06/2023]
Abstract
The cochlear implant (CI) is the first effective treatment for deafness and severe losses in hearing. As such, the CI is now widely regarded as one of the great advances in modern medicine. This article reviews the key events and discoveries that led up to the current CI systems, and we review and present some among the many possibilities for further improvements in device design and performance. The past achievements include: (1) development of reliable devices that can be used over the lifetime of a patient; (2) development of arrays of implanted electrodes that can stimulate more than one site in the cochlea; and (3) progressive and large improvements in sound processing strategies for CIs. In addition, cooperation between research organizations and companies greatly accelerated the widespread availability and use of safe and effective devices. Possibilities for the future include: (1) use of otoprotective drugs; (2) further improvements in electrode designs and placements; (3) further improvements in sound processing strategies; (4) use of stem cells to replace lost sensory hair cells and neural structures in the cochlea; (5) gene therapy; (6) further reductions in the trauma caused by insertions of electrodes and other manipulations during implant surgeries; and (7) optical rather electrical stimulation of the auditory nerve. Each of these possibilities is the subject of active research. Although great progress has been made to date in the development of the CI, including the first substantial restoration of a human sense, much more progress seems likely and certainly would not be a surprise.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Ear Institute, University of Miami Miller School of Medicine, Miami, Florida 33136-1015, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B. Gene transfer in inner ear cells: a challenging race. Gene Ther 2012; 20:237-47. [PMID: 22739386 DOI: 10.1038/gt.2012.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in human genomics led to the identification of numerous defective genes causing deafness, which represent novel putative therapeutic targets. Future gene-based treatment of deafness resulting from genetic or acquired sensorineural hearing loss may include strategies ranging from gene therapy to antisense delivery. For successful development of gene therapies, a minimal requirement involves the engineering of appropriate gene carrier systems. Transfer of exogenous genetic material into the mammalian inner ear using viral or non-viral vectors has been characterized over the last decade. The nature of inner ear cells targeted, as well as the transgene expression level and duration, are highly dependent on the vector type, the route of administration and the strength of the promoter driving expression. This review summarizes and discusses recent advances in inner ear gene-transfer technologies aimed at examining gene function or identifying new treatment for inner ear disorders.
Collapse
Affiliation(s)
- R Sacheli
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
18
|
Pan N, Kopecky B, Jahan I, Fritzsch B. Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 2012; 349:415-32. [PMID: 22688958 DOI: 10.1007/s00441-012-1454-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti.
Collapse
Affiliation(s)
- Ning Pan
- Department of Biology, University of Iowa, College of Liberal Arts and Sciences, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
19
|
Powers TR, Virk SM, Trujillo-Provencio C, Serrano EE. Probing the Xenopus laevis inner ear transcriptome for biological function. BMC Genomics 2012; 13:225. [PMID: 22676585 PMCID: PMC3532188 DOI: 10.1186/1471-2164-13-225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 05/21/2012] [Indexed: 01/27/2023] Open
Abstract
Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the impediment imposed by insufficient gene annotation. These findings heighten the relevance of Xenopus as a model organism for genetic investigations of inner ear organogenesis, morphogenesis, and regeneration.
Collapse
Affiliation(s)
- TuShun R Powers
- Biology Department, New Mexico State University, Las Cruces, USA
| | | | | | | |
Collapse
|
20
|
In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium. Cell Death Dis 2012; 3:e314. [PMID: 22622133 PMCID: PMC3366087 DOI: 10.1038/cddis.2012.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.
Collapse
|