1
|
Wang M, Wang T, Ji H, Yan J, Wang X, Zhang X, Li X, Yuan Y. Modulation effect of non-invasive transcranial ultrasound stimulation in an ADHD rat model. J Neural Eng 2023; 20. [PMID: 36599159 DOI: 10.1088/1741-2552/acb014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) with noninvasive high penetration and high spatial resolution has an effective neuromodulatory effect on neurological diseases. Attention deficit hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder that severely affects child health. However, the neuromodulatory effects of TUS on ADHD have not been reported to date. This study aimed to investigate the neuromodulatory effects of TUS on ADHD.Approach.TUS was performed in ADHD model rats for two consecutive weeks, and the behavioral improvement of ADHD, neural activity of ADHD from neurons and neural oscillation levels, and the plasma membrane dopamine transporter and brain-derived neurotrophic factor (BDNF) in the brains of ADHD rats were evaluated.Main results.TUS can improve cognitive behavior in ADHD rats, and TUS altered neuronal firing patterns and modulated the relative power and sample entropy of local field potentials in the ADHD rats. In addition, TUS can also enhance BDNF expression in the brain tissues.Significance. TUS has an effective neuromodulatory effect on ADHD and thus has the potential to clinically improve cognitive dysfunction in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, People's Republic of China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
2
|
Van Hook MJ. Brain-derived neurotrophic factor is a regulator of synaptic transmission in the adult visual thalamus. J Neurophysiol 2022; 128:1267-1277. [PMID: 36224192 PMCID: PMC9662800 DOI: 10.1152/jn.00540.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of circuit development, neuronal survival, and plasticity throughout the nervous system. In the visual system, BDNF is produced by retinal ganglion cells (RGCs) and transported along their axons to central targets. Within the dorsolateral geniculate nucleus (dLGN), a key RGC projection target for conscious vision, the BDNF receptor tropomyosin receptor kinase B (TrkB) is present on RGC axon terminals and postsynaptic thalamocortical (TC) relay neuron dendrites. Based on this, the goal of this study was to determine how BDNF modulates the conveyance of signals through the retinogeniculate (RG) pathway of adult mice. Application of BDNF to dLGN brain slices increased TC neuron spiking evoked by optogenetic stimulation of RGC axons. There was a modest contribution to this effect from a BDNF-dependent enhancement of TC neuron intrinsic excitability including increased input resistance and membrane depolarization. BDNF also increased evoked vesicle release from RGC axon terminals, as evidenced by increased amplitude of evoked excitatory postsynaptic currents (EPSCs), which was blocked by inhibition of TrkB or phospholipase C. High-frequency stimulation revealed that BDNF increased synaptic vesicle pool size, release probability, and replenishment rate. There was no effect of BDNF on EPSC amplitude or short-term plasticity of corticothalamic feedback synapses. Thus, BDNF regulates RG synapses by both presynaptic and postsynaptic mechanisms. These findings suggest that BNDF influences the flow of visual information through the retinogeniculate pathway.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and plasticity. In the visual system, BDNF is transported along retinal ganglion cell (RGC) axons to the dorsolateral geniculate nucleus (dLGN), although it is not known how it influences mature dLGN function. Here, BDNF enhanced thalamocortical relay neuron responses to signals arising from RGC axons in the dLGN, pointing toward an important role for BDNF in processing signals en route to the visual cortex.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
3
|
Vink HA, Ramekers D, Thomeer HGXM, Versnel H. Combined brain-derived neurotrophic factor and neurotrophin-3 treatment is preferred over either one separately in the preservation of the auditory nerve in deafened guinea pigs. Front Mol Neurosci 2022; 15:935111. [PMID: 36226314 PMCID: PMC9549372 DOI: 10.3389/fnmol.2022.935111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Severe hearing loss or deafness is often caused by cochlear hair cell loss and can be mitigated by a cochlear implant (CI). CIs target the auditory nerve, consisting of spiral ganglion cells (SGCs), which degenerate gradually, following hair cell loss. In animal models, it has been established that treatment with the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) reduce SGC degeneration. In this study, we aimed to investigate whether treatment with both BDNF and NT-3 (Cocktail) is superior to treatment with each neurotrophin separately regarding cell preservation and neural responsiveness to electrical stimulation. To this end, deafened guinea pigs received neurotrophic treatment in their right ear via a gelatin sponge on the perforated round window membrane, followed by cochlear implantation 4 weeks later in the same ear for electrophysiological recordings to various stimulation paradigms. Normal-hearing and deafened untreated guinea pigs were included as positive and negative controls, respectively. Substantial SGC loss occurred in all deafened animals. Each of the neurotrophic treatments led to enhanced SGC survival mainly in the basal turn of the cochlea, gradually decreasing toward the apex. The Cocktail treatment resulted in the highest SGC survival in the treated ear, followed by BDNF, with the least protection of SGCs following NT-3 treatment. Survival of the SGC’s peripheral processes (PPs) followed the same trend in response to the treatment. However, survival of SGCs and PPs in the contralateral untreated ears was also highest in the Cocktail group. Consequently, analysis of the ratio between the treated and untreated ears showed that the BDNF group, which showed low SGC survival in the untreated ear, had the highest relative SGC survival of the three neurotrophin-treated groups. Neurotrophic treatment had positive effects in part of the electrically evoked compound action-potential recording paradigms. These effects were only observed for the BDNF or Cocktail treatment. We conclude that treatment with either BDNF or a cocktail of BDNF and NT-3 is preferred to NT-3 alone. Furthermore, since the Cocktail treatment resulted in better electrophysiological responsiveness and overall higher SGC survival than BDNF alone, we are inclined to recommend the Cocktail treatment rather than BDNF alone.
Collapse
Affiliation(s)
- Henk A. Vink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Dyan Ramekers,
| | - Hans G. X. M. Thomeer
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Brown WGA, Needham K, Begeng JM, Thompson AC, Nayagam BA, Kameneva T, Stoddart PR. Response of primary auditory neurons to stimulation with infrared light in vitro. J Neural Eng 2021; 18:046003. [PMID: 33724234 DOI: 10.1088/1741-2552/abe7b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infrared light can be used to modulate the activity of neuronal cells through thermally-evoked capacitive currents and thermosensitive ion channel modulation. The infrared power threshold for action potentials has previously been found to be far lower in the in vivo cochlea when compared with other neuronal targets, implicating spiral ganglion neurons (SGNs) as a potential target for infrared auditory prostheses. However, conflicting experimental evidence suggests that this low threshold may arise from an intermediary mechanism other than direct SGN stimulation, potentially involving residual hair cell activity. APPROACH Patch-clamp recordings from cultured SGNs were used to explicitly quantify the capacitive and ion channel currents in an environment devoid of hair cells. Neurons were irradiated by a 1870 nm laser with pulse durations of 0.2-5.0 ms and powers up to 1.5 W. A Hodgkin-Huxley-type model was established by first characterising the voltage dependent currents, and then incorporating laser-evoked currents separated into temperature-dependent and temperature-gradient-dependent components. This model was found to accurately simulate neuronal responses and allowed the results to be extrapolated to stimulation parameter spaces not accessible during this study. MAIN RESULTS The previously-reported low in vivo SGN stimulation threshold was not observed, and only subthreshold depolarisation was achieved, even at high light exposures. Extrapolating these results with our Hodgkin-Huxley-type model predicts an action potential threshold which does not deviate significantly from other neuronal types. SIGNIFICANCE This suggests that the low-threshold response that is commonly reported in vivo may arise from an alternative mechanism, and calls into question the potential usefulness of the effect for auditory prostheses. The step-wise approach to modelling optically-evoked currents described here may prove useful for analysing a wider range of cell types where capacitive currents and conductance modulation are dominant.
Collapse
Affiliation(s)
- William G A Brown
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn VIC 3122, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Rabah AM, Swiderski DL, Raphael Y, Pfingst BE. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3900. [PMID: 33379919 PMCID: PMC7863685 DOI: 10.1121/10.0002882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
This study examined how multiple measures based on the electrically evoked compound action potential (ECAP) amplitude-growth functions (AGFs) were related to estimates of neural [spiral ganglion neuron (SGN) density and cell size] and electrode impedance measures in 34 specific pathogen free pigmented guinea pigs that were chronically implanted (4.9-15.4 months) with a cochlear implant electrode array. Two interphase gaps (IPGs) were used for the biphasic pulses and the effect of the IPG on each ECAP measure was measured ("IPG effect"). When using a stimulus with a constant IPG, SGN density was related to the across-subject variance in ECAP AGF linear slope, peak amplitude, and N1 latency. The SGN density values also help to explain a significant proportion of variance in the IPG effect for AGF linear slope and peak amplitude measures. Regression modeling revealed that SGN density was the primary dependent variable contributing to across-subject variance for ECAP measures; SGN cell size did not significantly improve the fitting of the model. Results showed that simple impedance measures were weakly related to most ECAP measures but did not typically improve the fit of the regression model.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Andrew M Rabah
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA
| |
Collapse
|
7
|
Heuer RA, Nella KT, Chang HT, Coots KS, Oleksijew AM, Roque CB, Silva LHA, McGuire TL, Homma K, Matsuoka AJ. Three-Dimensional Otic Neuronal Progenitor Spheroids Derived from Human Embryonic Stem Cells. Tissue Eng Part A 2020; 27:256-269. [PMID: 32580647 DOI: 10.1089/ten.tea.2020.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.
Collapse
Affiliation(s)
- Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa H A Silva
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Hart WL, Richardson RT, Kameneva T, Thompson AC, Wise AK, Fallon JB, Stoddart PR, Needham K. Combined optogenetic and electrical stimulation of auditory neurons increases effective stimulation frequency-an in vitro study. J Neural Eng 2020; 17:016069. [PMID: 31923907 DOI: 10.1088/1741-2552/ab6a68] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The performance of neuroprostheses, including cochlear and retinal implants, is currently constrained by the spatial resolution of electrical stimulation. Optogenetics has improved the spatial control of neurons in vivo but lacks the fast-temporal dynamics required for auditory and retinal signalling. The objective of this study is to demonstrate that combining optical and electrical stimulation in vitro could address some of the limitations associated with each of the stimulus modes when used independently. APPROACH The response of murine auditory neurons expressing ChR2-H134 to combined optical and electrical stimulation was characterised using whole cell patch clamp electrophysiology. MAIN RESULTS Optogenetic costimulation produces a three-fold increase in peak firing rate compared to optical stimulation alone and allows spikes to be evoked by combined subthreshold optical and electrical inputs. Subthreshold optical depolarisation also facilitated spiking in auditory neurons for periods of up to 30 ms without evidence of wide-scale Na+ inactivation. SIGNIFICANCE These findings may contribute to the development of spatially and temporally selective optogenetic-based neuroprosthetics and complement recent developments in 'fast opsins'.
Collapse
Affiliation(s)
- William L Hart
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rachael T Richardson
- The Bionics Institute, East Melbourne, VIC 3002, Australia
- Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Medical Bionics Department, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Tatiana Kameneva
- Swinburne University of Technology, Hawthorn VIC 3122, Australia
| | | | - Andrew K Wise
- The Bionics Institute, East Melbourne, VIC 3002, Australia
- Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Medical Bionics Department, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - James B Fallon
- The Bionics Institute, East Melbourne, VIC 3002, Australia
- Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Medical Bionics Department, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Paul R Stoddart
- ARC Training Centre in Biodevices, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Karina Needham
- Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Author to whom any correspondence should be addressed
| |
Collapse
|
9
|
Zhong C, Jiang Z, Guo Q, Zhang X. Protective effect of adenovirus-mediated erythropoietin expression on the spiral ganglion neurons in the rat inner ear. Int J Mol Med 2018; 41:2669-2677. [PMID: 29436578 PMCID: PMC5846647 DOI: 10.3892/ijmm.2018.3455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate the expression of erythropoietin (Epo) and the Epo receptor (Epo-R) in the spiral ganglion neurons (SGNs) of the rat inner ear, and to assess the effect of Epo adenovirus vector (Ad-Epo) on the spontaneous apoptosis of SGNs. A total of 60 ears from 30 healthy neonatal (2-3 days postnatal) Sprague-Dawley rats were used to examine the expression of Epo in the SGNs. The rats were divided into three groups: The negative control group, the vector control group [infected with a green fluorescent protein expression vector (Ad-GFP)] and the Ad-Epo group (infected with Ad-Epo). The expression of Epo and Epo-R was detected by immunohistochemistry and dual immunofluorescence staining using polyclonal antibodies directed against Epo and Epo-R, followed by confocal laser-scanning microscopy. An adenovirus vector was constructed and used to transfect the cultured SGNs. Following adenovirus infection, apoptosis of the SGNs was evaluated and Epo protein expression was assessed. Epo and Epo-R were widely expressed in the plasma membrane and the cytoplasm of the SGNs, as well as in the organ of Corti and the stria vascularis within the inner ear. Epo protein expression was upregulated in the Ad-Epo group compared with that in the other two groups (P<0.05). Apoptotic cells were seldom observed at day 4 of SGN culture in the negative control group. At day 7, marked apoptotic cells were detected in the negative control group and the vector control group. The apoptosis level in the Ad-Epo group was significantly decreased compared with that in the negative control group or the vector control group at day 7 (P<0.05). In conclusion, Epo and Epo-R are expressed in the SGNs of the inner ear of the rat, and Ad-Epo can decrease the spontaneous apoptosis of SGNs, which may provide a basis for the prevention or alleviation of sensorineural hearing loss.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhendong Jiang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Xueyuan Zhang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
10
|
Time-dependent activity of primary auditory neurons in the presence of neurotrophins and antibiotics. Hear Res 2017; 350:122-132. [DOI: 10.1016/j.heares.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/19/2022]
|
11
|
Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3. Sci Rep 2016; 6:28584. [PMID: 27335179 PMCID: PMC4917828 DOI: 10.1038/srep28584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
Primary auditory neurons rely on neurotrophic factors for development and survival. We previously determined that exposure to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) alters the activity of hyperpolarization-activated currents (Ih) in this neuronal population. Since potassium channels are sensitive to neurotrophins, and changes in Ih are often accompanied by a shift in voltage-gated potassium currents (IK), this study examined IK with exposure to both BDNF and NT3 and the impact on firing entrainment during high frequency pulse trains. Whole-cell patch-clamp recordings revealed significant changes in action potential latency and duration, but no change in firing adaptation or total outward IK. Dendrotoxin-I (DTX-I), targeting voltage-gated potassium channel subunits KV1.1 and KV1.2, uncovered an increase in the contribution of DTX-I sensitive currents with exposure to neurotrophins. No difference in Phrixotoxin-1 (PaTX-1) sensitive currents, mediated by KV4.2 and KV4.3 subunits, was observed. Further, no difference was seen in firing entrainment. These results show that combined BDNF and NT3 exposure influences the contribution of KV1.1 and KV1.2 to the low voltage-activated potassium current (IKL). Whilst this is accompanied by a shift in spike latency and duration, both firing frequency and entrainment to high frequency pulse trains are preserved.
Collapse
|
12
|
Jin Y, Lyu AR, Park SJ, Xu J, Cui J, Sohn KC, Hur GM, Jin Y, Park YH. Early Postnatal NT-3 Gene Delivery Enhances Hearing Acquisition in the Developmental Period. Laryngoscope 2016; 126:E379-E385. [DOI: 10.1002/lary.26130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yongde Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Department of Medical Science; Chungnam National University; Daejeon Republic of Korea
| | - Sung-Jae Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jie Cui
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Kyung-Cheol Sohn
- Department of Dermatology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Yulian Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Brain Research Institute , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
13
|
Hahnewald S, Tscherter A, Marconi E, Streit J, Widmer HR, Garnham C, Benav H, Mueller M, Löwenheim H, Roccio M, Senn P. Response profiles of murine spiral ganglion neurons on multi-electrode arrays. J Neural Eng 2015; 13:016011. [PMID: 26656212 DOI: 10.1088/1741-2560/13/1/016011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.
Collapse
Affiliation(s)
- Stefan Hahnewald
- Inner Ear Research Laboratory, University Departments of Clinical Research and Otorhinolaryngology, Head & Neck Surgery, Inselspital, University of Bern, Switzerland. Regenerative Neuroscience Cluster, Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function. J Neurosci 2015; 35:12331-45. [PMID: 26354903 DOI: 10.1523/jneurosci.0096-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We addressed two questions important for fundamental insight into the effects of exogenous neurotrophins on a degenerating neural system, and for translation to the clinic. First, does temporary treatment with brain-derived neurotrophic factor (BDNF) prevent nerve degeneration on the long term? Second, how does a BDNF-treated nerve respond to electrical stimulation? Deafened guinea pigs received a cochlear implant, and their cochleas were infused with BDNF for 4 weeks. Up to 8 weeks after treatment, their cochleas were analyzed histologically. Electrically evoked compound action potentials (eCAPs) were recorded using stimulation paradigms that are informative of neural survival. Spiral ganglion cell (SGC) degeneration was prevented during BDNF treatment, resulting in 1.9 times more SGCs than in deafened untreated cochleas. Importantly, SGC survival was almost complete 8 weeks after treatment cessation, when 2.6 times more SGCs were observed. In four eCAP characteristics (three involving alteration of the interphase gap of the biphasic current pulse and one involving pulse trains), we found large and statistically significant differences between normal-hearing and deaf controls. Importantly, for BDNF-treated animals, these eCAP characteristics were near normal, suggesting healthy responsiveness of BDNF-treated SGCs. In conclusion, clinically practicable short-term neurotrophin treatment is sufficient for long-term survival of SGCs, and it can restore or preserve SGC function well beyond the treatment period. Significance statement: Successful restoration of hearing in deaf subjects by means of a cochlear implant requires a healthy spiral ganglion cell population. Deafness-induced degeneration of these cells can be averted with neurotrophic factors. In the present study in deafened guinea pigs, we investigated the long-term effects of temporary (i.e., clinically practicable) treatment with brain-derived neurotrophic factor (BDNF). We show that, after treatment cessation, the neuroprotective effect remains for at least 8 weeks. Moreover, for the first time, it is shown that the electrical responsiveness of BDNF-treated spiral ganglion cells is preserved during this period as well. These findings demonstrate that treatment of the auditory nerve with neurotrophic factors may be relevant for cochlear implant users.
Collapse
|
15
|
Paviolo C, Thompson AC, Yong J, Brown WGA, Stoddart PR. Nanoparticle-enhanced infrared neural stimulation. J Neural Eng 2014; 11:065002. [DOI: 10.1088/1741-2560/11/6/065002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Yong J, Needham K, Brown WGA, Nayagam BA, McArthur SL, Yu A, Stoddart PR. Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 2014; 3:1862-8. [PMID: 24799427 DOI: 10.1002/adhm.201400027] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/21/2014] [Indexed: 12/21/2022]
Abstract
Infrared stimulation offers an alternative to electrical stimulation of neuronal tissue, with potential for direct, non-contact activation at high spatial resolution. Conventional methods of infrared neural stimulation (INS) rely on transient heating due to the absorption of relatively intense laser beams by water in the tissue. However, the water absorption also limits the depth of penetration of light in tissue. Therefore, the use of a near-infrared laser at 780 nm to stimulate cultured rat primary auditory neurons that are incubated with silica-coated gold nanorods (Au NRs) as an extrinsic absorber is investigated. The laser-induced electrical behavior of the neurons is observed using whole-cell patch clamp electrophysiology. The nanorod-treated auditory neurons (NR-ANs) show a significant increase in electrical activity compared with neurons that are incubated with non-absorbing silica-coated gold nanospheres and control neurons with no gold nanoparticles. The laser-induced heating by the nanorods is confirmed by measuring the transient temperature increase near the surface of the NR-ANs with an open pipette electrode. These findings demonstrate the potential to improve the efficiency and increase the penetration depth of INS by labeling nerves with Au NRs and then exposing them to infrared wavelengths in the water window of tissue.
Collapse
Affiliation(s)
- Jiawey Yong
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Karina Needham
- Department of Otolaryngology; University of Melbourne; East Melbourne Victoria 3002 Australia
| | - William G. A. Brown
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology; University of Melbourne; Carlton Victoria 3010 Australia
| | - Sally L. McArthur
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Aimin Yu
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| | - Paul R. Stoddart
- Faculty of Science, Engineering and Technology; Swinburne University of Technology; P. O. Box 218 Hawthorn Victoria 3122 Australia
| |
Collapse
|
17
|
Newbold C, Farrington A, Peters L, Cowan R, Needham K. Electropermeabilization of Adherent Cells with Cochlear Implant Electrical Stimulation in vitro. Audiol Neurootol 2014; 19:283-92. [DOI: 10.1159/000362588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
|
18
|
Gunewardene N, Bergen NV, Crombie D, Needham K, Dottori M, Nayagam BA. Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. Biores Open Access 2014; 3:162-75. [PMID: 25126480 PMCID: PMC4120935 DOI: 10.1089/biores.2014.0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Nicole Van Bergen
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Duncan Crombie
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, University of Melbourne , Parkville, Victoria, Australia
| | - Bryony A Nayagam
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia . ; Department of Audiology and Speech Pathology, University of Melbourne , Parkville, Victoria, Australia . ; Bionics Institute, University of Melbourne , East Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Needham K, Hyakumura T, Gunewardene N, Dottori M, Nayagam BA. Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells. Stem Cell Res 2013; 12:241-9. [PMID: 24280418 DOI: 10.1016/j.scr.2013.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023] Open
Abstract
In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps), with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31-56 days) and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.
Collapse
Affiliation(s)
- Karina Needham
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC 3065, Australia.
| | - Tomoko Hyakumura
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia.
| | - Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia.
| | - Mirella Dottori
- Centre for Neural Engineering, NICTA, University of Melbourne, 203 Bouverie Street, Parkville, VIC 3010, Australia.
| | - Bryony A Nayagam
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Department of Audiology and Speech Pathology, University of Melbourne, 550 Swanston Street, Parkville, VIC 3010, Australia; Bionics Institute, 384-388 Albert Street, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
20
|
Brown WGA, Needham K, Nayagam BA, Stoddart PR. Whole cell patch clamp for investigating the mechanisms of infrared neural stimulation. J Vis Exp 2013. [PMID: 23929071 DOI: 10.3791/50444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
It has been demonstrated in recent years that pulsed, infrared laser light can be used to elicit electrical responses in neural tissue, independent of any further modification of the target tissue. Infrared neural stimulation has been reported in a variety of peripheral and sensory neural tissue in vivo, with particular interest shown in stimulation of neurons in the auditory nerve. However, while INS has been shown to work in these settings, the mechanism (or mechanisms) by which infrared light causes neural excitation is currently not well understood. The protocol presented here describes a whole cell patch clamp method designed to facilitate the investigation of infrared neural stimulation in cultured primary auditory neurons. By thoroughly characterizing the response of these cells to infrared laser illumination in vitro under controlled conditions, it may be possible to gain an improved understanding of the fundamental physical and biochemical processes underlying infrared neural stimulation.
Collapse
Affiliation(s)
- William G A Brown
- Biotactical Engineering, Faculty of Engineering and Industrial Science, Swinburne University of Technology
| | | | | | | |
Collapse
|
21
|
Nayagam BA, Edge AS, Needham K, Hyakumura T, Leung J, Nayagam DAX, Dottori M. An in vitro model of developmental synaptogenesis using cocultures of human neural progenitors and cochlear explants. Stem Cells Dev 2012; 22:901-12. [PMID: 23078657 DOI: 10.1089/scd.2012.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In mammals, the sensory hair cells and auditory neurons do not spontaneously regenerate and their loss results in permanent hearing impairment. Stem cell therapy is one emerging strategy that is being investigated to overcome the loss of sensory cells after hearing loss. To successfully replace auditory neurons, stem cell-derived neurons must be electrically active, capable of organized outgrowth of processes, and of making functional connections with appropriate tissues. We have developed an in vitro assay to test these parameters using cocultures of developing cochlear explants together with neural progenitors derived from human embryonic stem cells (hESCs). We found that these neural progenitors are electrically active and extend their neurites toward the sensory hair cells in cochlear explants. Importantly, this neurite extension was found to be significantly greater when neural progenitors were predifferentiated toward a neural crest-like lineage. When grown in coculture with hair cells only (denervated cochlear explants), stem cell-derived processes were capable of locating and growing along the hair cell rows in an en passant-like manner. Many presynaptic terminals (synapsin 1-positive) were observed between hair cells and stem cell-derived processes in vitro. These results suggest that differentiated hESC-derived neural progenitors may be useful for developing therapies directed at auditory nerve replacement, including complementing emerging hair cell regeneration therapies.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, The University of Melbourne, Melbourne, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|