1
|
Tsuji RK, Hamerschmidt R, Lavinsky J, Felix F, Silva VAR. Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence. Braz J Otorhinolaryngol 2024; 91:101512. [PMID: 39442262 PMCID: PMC11539123 DOI: 10.1016/j.bjorl.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE To make evidence-based recommendations for the indications and complications of Cochlear Implant (CI) surgery in adults and children. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on cochlear implantation were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The topics were divided into 2 parts: (1) Evaluation of candidate patients and indications for CI surgery; (2) CI surgery - techniques and complications. CONCLUSIONS CI is a safe device for auditory rehabilitation of patients with severe-to-profound hearing loss. In recent years, indications for unilateral hearing loss and vestibular schwannoma have been expanded, with encouraging results. However, for a successful surgery, commitment of family members and patients in the hearing rehabilitation process is essential.
Collapse
Affiliation(s)
- Robinson Koji Tsuji
- Universidade de São Paulo (USP), Faculdade de Medicina, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ, Brazil
| | - Vagner Antonio Rodrigues Silva
- Universidade de Campinas (Unicamp), Faculdade de Ciências Médicas (FCM), Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Panario J, Bester C, O'Leary S. Predicting Postoperative Speech Perception and Audiometric Thresholds Using Intracochlear Electrocochleography in Cochlear Implant Recipients. Ear Hear 2024; 45:1173-1190. [PMID: 38816899 DOI: 10.1097/aud.0000000000001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Electrocochleography (ECochG) appears to offer the most accurate prediction of post-cochlear implant hearing outcomes. This may be related to its capacity to interrogate the health of underlying cochlear tissue. The four major components of ECochG (cochlear microphonic [CM], summating potential [SP], compound action potential [CAP], and auditory nerve neurophonic [ANN]) are generated by different cochlear tissue components. Analyzing characteristics of these components can reveal the state of hair and neural cell in a cochlea. There is limited evidence on the characteristics of intracochlear (IC) ECochG recordings measured across the array postinsertion but compared with extracochlear recordings has better signal to noise ratio and spatial specificity. The present study aimed to examine the relationship between ECochG components recorded from an IC approach and postoperative speech perception or audiometric thresholds. DESIGN In 113 human subjects, responses to 500 Hz tone bursts were recorded at 11 IC electrodes across a 22-electrode cochlear implant array immediately following insertion. Responses to condensation and rarefaction stimuli were then subtracted from one another to emphasize the CM and added to one another to emphasize the SP, ANN, and CAP. Maximum amplitudes and extracochlear electrode locations were recorded for each of these ECochG components. These were added stepwise to a multi-factor generalized additive model to develop a best-fit model predictive model for pure-tone audiometric thresholds (PTA) and speech perception scores (speech recognition threshold [SRT] and consonant-vowel-consonant phoneme [CVC-P]) at 3- and 12-month postoperative timepoints. This best-fit model was tested against a generalized additive model using clinical factors alone (preoperative score, age, and gender) as a null model proxy. RESULTS ECochG-factor models were superior to clinical factor models in predicting postoperative PTA, CVC-P, and SRT outcomes at both timepoints. Clinical factor models explained a moderate amount of PTA variance ( r2 = 45.9% at 3-month, 31.8% at 12-month, both p < 0.001) and smaller variances of CVC-P and SRT ( r2 range = 6 to 13.7%, p = 0.008 to 0.113). Age was not a significant predictive factor. ECochG models explained more variance at the 12-month timepoint ( r2 for PTA = 52.9%, CVC-P = 39.6%, SRT = 36.4%) compared with the 3-month one timepoint ( r2 for PTA = 49.4%, CVC-P = 26.5%, SRT = 22.3%). The ECochG model was based on three factors: maximum SP deflection amplitude, and electrode position of CM and SP peaks. Adding neural (ANN and/or CAP) factors to the model did not improve variance explanation. Large negative SP deflection was associated with poorer outcomes and a large positive SP deflection with better postoperative outcomes. Mid-array peaks of SP and CM were both associated with poorer outcomes. CONCLUSIONS Postinsertion IC-ECochG recordings across the array can explain a moderate amount of postoperative speech perception and audiometric thresholds. Maximum SP deflection and its location across the array appear to have a significant predictive value which may reflect the underlying state of cochlear health.
Collapse
Affiliation(s)
- Jared Panario
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Christofer Bester
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen O'Leary
- Department Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Morales-Angulo C, Gallo-Terán J, González-Aguado R, Onecha E, Del Castillo I. Hearing loss secondary to variants in the OTOF gene. Int J Pediatr Otorhinolaryngol 2024; 186:112082. [PMID: 39265223 DOI: 10.1016/j.ijporl.2024.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Genetic variants in the OTOF gene are responsible for non-syndromic hearing loss with an autosomal recessive inheritance pattern. The objective of our work was to evaluate the clinical characteristics of patients with biallelic pathogenic variants in OTOF and their evolution after treatment. METHODS A cohort of 124 patients with prelingual hearing loss, studied from 1996 to 2023, was included in this study. A genetic analysis was conducted to identify the type and frequency of variants in the OTOF gene and their relation to the clinical characteristics of the patients. RESULTS The homozygous p. Gln829* variant in the OTOF gene was detected in 3 probands (2.4 %) of a group 124 individuals with prelingual hearing loss. Another 6 family members to a total of 9 individuals were finally included. All presented with severe/profound bilateral sensorineural hearing loss of congenital onset. Three of these individuals were diagnosed with auditory neuropathy spectrum disorder. One individual passed the OAE test during the screening program, and since he did not have risk factors for hearing loss that would warrant ABR testing, this led to a delay in his hearing loss diagnosis. Four individuals underwent cochlear implants (three bilateral) with good functional outcomes. In three of them. However, in 17 familial cases with heterozygous variants, either no hearing loss was observed or it was within the expected range for their age. CONCLUSIONS Hearing loss secondary to the p. Gln829* variant of the OTOF gene is relatively rare in our medical area. Its presence in homozygosity is the cause of severe/profound bilateral prelingual sensorineural hearing loss, responsible for auditory neuropathy with a good response to cochlear implantation.
Collapse
Affiliation(s)
- Carmelo Morales-Angulo
- Department of Otolaryngology and Head and Neck Surgery. Marqués de Valdecilla University Hospital, Santander, Spain; Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; Faculty of Medicine. University of Cantabria, Santander, Spain.
| | - Jaime Gallo-Terán
- Department of Radiology. Marqués de Valdecilla University Hospital, Santander, Spain
| | - Rocío González-Aguado
- Department of Otolaryngology and Head and Neck Surgery. Marqués de Valdecilla University Hospital, Santander, Spain
| | - Esther Onecha
- Department of Genetics. Marqués de Valdecilla University Hospital, Santander, Spain
| | - Ignacio Del Castillo
- Department of Genetics. Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
4
|
Geys M, Sijgers L, Dobrev I, Dalbert A, Röösli C, Pfiffner F, Huber A. ZH-ECochG Bode Plot: A Novel Approach to Visualize Electrocochleographic Data in Cochlear Implant Users. J Clin Med 2024; 13:3470. [PMID: 38929998 PMCID: PMC11205027 DOI: 10.3390/jcm13123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.
Collapse
Affiliation(s)
- Marlies Geys
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Lv J, Wang H, Cheng X, Chen Y, Wang D, Zhang L, Cao Q, Tang H, Hu S, Gao K, Xun M, Wang J, Wang Z, Zhu B, Cui C, Gao Z, Guo L, Yu S, Jiang L, Yin Y, Zhang J, Chen B, Wang W, Chai R, Chen ZY, Li H, Shu Y. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. Lancet 2024; 403:2317-2325. [PMID: 38280389 DOI: 10.1016/s0140-6736(23)02874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.
Collapse
Affiliation(s)
- Jun Lv
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Hui Wang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xiaoting Cheng
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yuxin Chen
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Daqi Wang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Longlong Zhang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Qi Cao
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Honghai Tang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Shaowei Hu
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Kaiyu Gao
- Research and Development Department, Shanghai Refreshgene Therapeutics, Shanghai, China
| | - Mengzhao Xun
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Jinghan Wang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Zijing Wang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Biyun Zhu
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Chong Cui
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Ziwen Gao
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Sha Yu
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Luoying Jiang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yanbo Yin
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Jiajia Zhang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Bing Chen
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Wuqing Wang
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China; Department of Otolaryngology Head and Neck Surgery of Zhongda Hospital, Southeast University, Nanjing, China; Advanced Institute for Life and Health, Southeast University, Nanjing, China; Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Neurology of Aerospace Center Hospital, Beijing Institute of Technology, Beijing, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA, USA
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Santarelli R, Scimemi P, Cama E, Domínguez-Ruiz M, Bonora C, Gallo C, Rodríguez-Ballesteros M, del Castillo I. Preservation of Distortion Product Otoacoustic Emissions in OTOF -Related Hearing Impairment. Ear Hear 2024; 45:250-256. [PMID: 37677959 PMCID: PMC10718209 DOI: 10.1097/aud.0000000000001421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/16/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Attenuation of otoacoustic emissions over time has been reported for many patients with hearing impairment harboring mutations in the OTOF gene. In this study, the time course of changes of distortion product otoacoustic emissions (DPOAEs) has been analyzed in a cohort of patients in the light of tympanometry results. DESIGN The changes of DPOAEs in 16 patients with OTOF -related hearing impairment were retrospectively analyzed. RESULTS All but one subject showed DPOAEs bilaterally at the time of diagnosis. Three patients diagnosed as adults still had DPOAEs at ages of 27, 31, and 47 years, respectively. Follow-up was available for 7 children diagnosed at the age of 1 to 3 years, who still showed preservation of DPOAEs at ages of 5 to 16 years. The responses were absent or attenuated in amplitude at some follow-up appointments in association with type B or C tympanograms. CONCLUSIONS DPOAEs are preserved much longer than expected in a cohort of patients with OTOF -related hearing impairment. The previously reported loss of DPOAEs may have been caused in some children by increased middle ear impedance due to otitis media.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padua, Padua, Italy
- Audiology Service, Santi Giovanni e Paolo Hospital, Venezia, Italy
| | - Pietro Scimemi
- Department of Neurosciences, University of Padua, Padua, Italy
- Audiology Service, Santi Giovanni e Paolo Hospital, Venezia, Italy
| | - Elona Cama
- Department of Neurosciences, University of Padua, Padua, Italy
- Audiology Service, Santi Giovanni e Paolo Hospital, Venezia, Italy
| | - María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Chiara Bonora
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Chiara Gallo
- Department of Neurosciences, University of Padua, Padua, Italy
| | | | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
7
|
Chen H, Fang Q, Benseler F, Brose N, Moser T. Probing the role of the C 2F domain of otoferlin. Front Mol Neurosci 2023; 16:1299509. [PMID: 38152587 PMCID: PMC10751786 DOI: 10.3389/fnmol.2023.1299509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Afferent synapses of cochlear inner hair cells (IHCs) employ a unique molecular machinery. Otoferlin is a key player in this machinery, and its genetic defects cause human auditory synaptopathy. We employed site-directed mutagenesis in mice to investigate the role of Ca2+ binding to the C2F domain of otoferlin. Substituting two aspartate residues of the C2F top loops, which are thought to coordinate Ca2+-ions, by alanines (OtofD1841/1842A) abolished Ca2+-influx-triggered IHC exocytosis and synchronous signaling in the auditory pathway despite substantial expression (~60%) of the mutant otoferlin in the basolateral IHC pole. Ca2+ influx of IHCs and their resting membrane capacitance, reflecting IHC size, as well as the number of IHC synapses were maintained. The mutant otoferlin showed a strong apex-to-base abundance gradient in IHCs, suggesting impaired protein targeting. Our results indicate a role of the C2F domain in otoferlin targeting and of Ca2+ binding by the C2F domain for IHC exocytosis and hearing.
Collapse
Affiliation(s)
- Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Qinghua Fang
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Jaime Tobón LM, Moser T. Ca 2+ regulation of glutamate release from inner hair cells of hearing mice. Proc Natl Acad Sci U S A 2023; 120:e2311539120. [PMID: 38019860 DOI: 10.1073/pnas.2311539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| |
Collapse
|
9
|
Ford CL, Riggs WJ, Quigley T, Keifer OP, Whitton JP, Valayannopoulos V. The natural history, clinical outcomes, and genotype-phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Hum Genet 2023; 142:1429-1449. [PMID: 37679651 PMCID: PMC10511631 DOI: 10.1007/s00439-023-02595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Congenital hearing loss affects one in 500 newborns. Sequence variations in OTOF, which encodes the calcium-binding protein otoferlin, are responsible for 1-8% of congenital, nonsyndromic hearing loss and are the leading cause of auditory neuropathy spectrum disorders. The natural history of otoferlin-related hearing loss, the relationship between OTOF genotype and hearing loss phenotype, and the outcomes of clinical practices in patients with this genetic disorder are incompletely understood because most analyses have reported on small numbers of cases with homogeneous OTOF genotypes. Here, we present the first systematic, quantitative literature review of otoferlin-related hearing loss, which analyzes patient-specific data from 422 individuals across 61 publications. While most patients display a typical phenotype of severe-to-profound hearing loss with prelingual onset, 10-15% of patients display atypical phenotypes, including mild-to-moderate, progressive, and temperature-sensitive hearing loss. Patients' phenotypic presentations appear to depend on their specific genotypes. For example, non-truncating variants located in and immediately downstream of the C2E calcium-binding domain are more likely to produce atypical phenotypes. Additionally, the prevalence of certain sequence variants and their associated phenotypes varies between populations due to evolutionary founder effects. Our analyses also suggest otoacoustic emissions are less common in older patients and those with two truncating OTOF variants. Critically, our review has implications for the application and limitations of clinical practices, including newborn hearing screenings, hearing aid trials, cochlear implants, and upcoming gene therapy clinical trials. We conclude by discussing the limitations of available research and recommendations for future studies on this genetic cause of hearing loss.
Collapse
|
10
|
Panario J, Bester C, O'Leary SJ. Characteristics of the Summating Potential Measured Across a Cochlear Implant Array as an Indicator of Cochlear Function. Ear Hear 2023; 44:1088-1106. [PMID: 36935398 PMCID: PMC10426787 DOI: 10.1097/aud.0000000000001347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVES The underlying state of cochlear and neural tissue function is known to affect postoperative speech perception following cochlear implantation. The ability to assess these tissues in patients can be performed using intracochlear electrocochleography (IC ECochG). One component of ECochG is the summating potential (SP) that appears to be generated by multiple cochlear tissues. Its qualities may be able to detect the presence of functional inner hair cells, but evidence for this is limited in human cochleae. This study aimed to examine the IC SP characteristics in cochlear implantation recipients, its relationship to preoperative speech perception and audiometric thresholds, and to other IC ECochG components. DESIGN This is a retrospective analysis of 113 patients' IC ECochG recordings across the array in response to a 500 Hz tone burst stimulus. Responses to condensation and rarefaction stimuli were then subtracted from one another to emphasize the cochlear microphonic and added to one another to emphasize the SP, auditory nerve neurophonic, and compound action potential. Patients were grouped based on their maximum SP deflection being large and positive (+SP), large and negative (-SP), or minimal (0 SP) to further investigate these relationships. RESULTS Patients in the +SP group had better preoperative speech perception (mean consonant-vowel-consonant phoneme score 46%) compared to the -SP and 0 SP groups (consonant-vowel-consonant phoneme scores 34% and 36%, respectively, difference to +SP: p < 0.05). Audiometric thresholds were lowest for +SP (mean pure-tone average 50 dB HL), then -SP (65 dB HL), and highest for 0 SP patients (70 dB HL), but there was not a statistical significance between +SP and -SP groups ( p > 0.1). There were also distinct differences between SP groups in the qualities of their other ECochG components. These included the +SP patients having larger cochlear microphonic maximum amplitude, more apical SP peak electrode locations, and a more spatially specific SP magnitude growth pattern across the array. CONCLUSIONS Patients with large positive SP deflection in IC ECochG have preoperatively better speech perception and lower audiometric thresholds than those without. Patterns in other ECochG components suggest its positive deflection may be an indicator of cochlear function.
Collapse
Affiliation(s)
- Jared Panario
- Department Otolaryngology, University of Melbourne, Victoria, Australia
| | - Christofer Bester
- Department Otolaryngology, University of Melbourne, Victoria, Australia
| | - Stephen John O'Leary
- Department Otolaryngology, University of Melbourne, Victoria, Australia
- Royal Victorian Eye and Ear Hospital, Victoria, Australia
| |
Collapse
|
11
|
Tsuzuki N, Namba K, Saegusa C, Mutai H, Nishiyama T, Oishi N, Matsunaga T, Fujioka M, Ozawa H. Apoptosis of type I spiral ganglion neuron cells in Otof-mutant mice. Neurosci Lett 2023; 803:137178. [PMID: 36914046 DOI: 10.1016/j.neulet.2023.137178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Otof, which encodes otoferlin, knockout mice are considered model mice for auditory neuropathy spectrum disorder, which is characterized by an absent auditory brainstem response (ABR) despite preserved distortion product otoacoustic emission (DPOAE). Although otoferlin-deficient mice lack neurotransmitter release at the inner hair cell (IHC) synapse, it remains unclear how the Otof mutation affects spiral ganglions. Thus, we used Otof-mutant mice carrying the Otoftm1a(KOMP)Wtsi allele (Otoftm1a) and analyzed spiral ganglion neurons (SGNs) in Otoftm1a/tm1a mice by immunolabeling type Ⅰ SGNs (SGN-Ⅰ) and type II SGNs (SGN-II). We also examined apoptotic cells in SGNs. Four-week-old Otoftm1a/tm1a mice had an absent ABR but normal DPOAEs. The number of SGNs was significantly lower in Otoftm1a/tm1a mice on postnatal day 7 (P7), P14, and P28 compared with that of wild-type mice. Moreover, significantly more apoptotic SGNs were observed in Otoftm1a/tm1a mice than in wild-type mice on P7, P14, and P28. SGN-IIs were not significantly reduced in Otoftm1a/tm1a mice on P7, P14, and P28. No apoptotic SGN-IIs were observed under our experimental conditions. In summary, Otoftm1a/tm1a mice showed a reduction in SGNs accompanied by apoptosis of SGN-Ⅰs even before the onset of hearing. We speculate that the reduction in SGNs with apoptosis is a secondary defect caused by a lack of otoferlin in IHCs. Appropriate glutamatergic synaptic inputs may be important for the survival of SGNs.
Collapse
Affiliation(s)
- Nobuyoshi Tsuzuki
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan; Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Kazunori Namba
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Chika Saegusa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan.
| | - Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Takanori Nishiyama
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Naoki Oishi
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan; Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Masato Fujioka
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan; Clinical and Translational Research Center, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hiroyuki Ozawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
13
|
Silva VAR, Pauna HF, Lavinsky J, Hyppolito MA, Vianna MF, Leal M, Massuda ET, Hamerschmidt R, Bahmad F, Cal RV, Sampaio ALL, Felix F, Chone CT, Castilho AM. Task force Guideline of Brazilian Society of Otology ‒ hearing loss in children - Part I ‒ Evaluation. Braz J Otorhinolaryngol 2022; 89:159-189. [PMID: 36529647 PMCID: PMC9874360 DOI: 10.1016/j.bjorl.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To provide an overview of the main evidence-based recommendations for the diagnosis of hearing loss in children and adolescents aged 0 to 18 years. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on childhood hearing loss were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The evaluation and diagnosis of hearing loss: universal newborn hearing screening, laboratory testing, congenital infections (especially cytomegalovirus), genetic testing and main syndromes, radiologic imaging studies, vestibular assessment of children with hearing loss, auditory neuropathy spectrum disorder, autism spectrum disorder, and noise-induced hearing loss. CONCLUSIONS Every child with suspected hearing loss has the right to diagnosis and appropriate treatment if necessary. This task force considers 5 essential rights: (1) Otolaryngologist consultation; (2) Speech assessment and therapy; (3) Diagnostic tests; (4) Treatment; (5) Ophthalmologist consultation.
Collapse
Affiliation(s)
- Vagner Antonio Rodrigues Silva
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| | - Henrique Furlan Pauna
- Hospital Universitário Cajuru, Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Cirurgia, Porto Alegre, RS, Brazil
| | - Miguel Angelo Hyppolito
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Melissa Ferreira Vianna
- Irmandade Santa Casa de Misericórdia de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Mariana Leal
- Universidade Federal de Pernambuco (UFPE), Departamento de Cirurgia, Recife, PE, Brazil
| | - Eduardo Tanaka Massuda
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil
| | - Fayez Bahmad
- Universidade de Brasília (UnB), Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia (IBO), Brasília, DF, Brazil
| | - Renato Valério Cal
- Centro Universitário do Estado do Pará (CESUPA), Departamento de Otorrinolaringologia, Belém, PA, Brazil
| | - André Luiz Lopes Sampaio
- Universidade de Brasília (UnB), Faculdade de Medicina, Laboratório de Ensino e Pesquisa em Otorrinolaringologia, Brasília, DF, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Departamento de Otorrinolaringologia, Rio de Janeiro, RJ, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Arthur Menino Castilho
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| |
Collapse
|
14
|
Auditory neuropathy: from etiology to management. Curr Opin Otolaryngol Head Neck Surg 2022; 30:332-338. [PMID: 35939320 DOI: 10.1097/moo.0000000000000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Auditory neuropathy is a disorder of auditory dysfunction characterized by the normal function of the outer hair cells and malfunction of the inner hair cells, synapses, postsynapses and/or auditory afferent nervous system. This review summarizes the process of discovery and naming of auditory neuropathy and describes the acquired, associated genetic disorders and management available. RECENT FINDINGS In the last 40 years, auditory neuropathy has undergone a process of discovery, naming and progressive elucidation of its complex pathological mechanisms. Recent studies have revealed numerous acquired and inherited causative factors associated with auditory neuropathy. Studies have analyzed the pathogenic mechanisms of various genes and the outcomes of cochlear implantation. New therapeutic approaches, such as stem cell therapy and gene therapy are the future trends in the treatment of auditory neuropathy. SUMMARY A comprehensive understanding of the pathogenic mechanisms is crucial in illustrating auditory neuropathy and assist in developing future management strategies.
Collapse
|
15
|
Lin PH, Wu HP, Wu CM, Chiang YT, Hsu JS, Tsai CY, Wang H, Tseng LH, Chen PY, Yang TH, Hsu CJ, Chen PL, Wu CC, Liu TC. Cochlear Implantation Outcomes in Patients with Auditory Neuropathy Spectrum Disorder of Genetic and Non-Genetic Etiologies: A Multicenter Study. Biomedicines 2022; 10:biomedicines10071523. [PMID: 35884828 PMCID: PMC9313466 DOI: 10.3390/biomedicines10071523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
With diverse etiologies and clinical features, the management of pediatric auditory neuropathy spectrum disorder (ANSD) is often challenging, and the outcomes of cochlear implants (CIs) are variable. This study aimed to investigate CI outcomes in pediatric patients with ANSD of different etiologies. Thirty-six children with ANSD who underwent cochlear implantation between 2001 and 2021 were included. Comprehensive etiological analyses were conducted, including a history review, next-generation sequencing-based genetic examinations, and imaging studies using high-resolution computed tomography and magnetic resonance imaging. Serial behavioral and speech audiometry were performed before and after surgery, and the outcomes with CI were evaluated using the Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. By etiology, 18, 1, 1, and 10 patients had OTOF-related, WFS1-related, OPA1-related, and cochlear nerve deficiency (CND)-related ANSD, respectively. Six patients had no definite etiology. The average CI-aided behavioral threshold was 28.3 ± 7.8 dBHL, and those with CND-related ANSD were significantly worse than OTOF-related ANSD. The patients’ median CAP and SIR scores were 6 and 4, respectively. Favorable CI outcomes were observed in patients with certain etiologies of ANSD, particularly those with OTOF (CAP/SIR scores 5–7/2–5), WFS1 (CAP/SIR score 6/5), and OPA1 variants (CAP/SIR score 7/5). Patients with CND had suboptimal CI outcomes (CAP/SIR scores 2–6/1–3). Identifying the etiologies in ANSD patients is crucial before surgery and can aid in predicting prognoses.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Che-Ming Wu
- Department of Otolaryngology & Head and Neck Surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 23652, Taiwan;
- Department of Otolaryngology & Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, Taoyuan 33305, Taiwan
| | - Yu-Ting Chiang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
| | - Han Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Li-Hui Tseng
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Pey-Yu Chen
- Department of Otolaryngology, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (P.-H.L.); (P.-L.C.)
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30261, Taiwan
- Hearing and Speech Center, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (C.-Y.T.); (H.W.); (L.-H.T.); (T.-H.Y.); (C.-J.H.)
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
16
|
Hickox AE, Valero MD, McLaughlin JT, Robinson GS, Wellman JA, McKenna MJ, Sewell WF, Simons EJ. Genetic Medicine for Hearing Loss: OTOF as Exemplar. J Am Acad Audiol 2022; 32:646-653. [PMID: 35609591 DOI: 10.1055/s-0041-1730410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss. We will use the example of otoferlin gene (OTOF)-mediated hearing loss, a sensorineural hearing loss due to autosomal recessive mutations of the OTOF gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William F Sewell
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
17
|
Genetic profiles of non-syndromic severe-profound hearing loss in Chinese Hans by whole-exome sequencing. Gene 2022; 819:146258. [PMID: 35114279 DOI: 10.1016/j.gene.2022.146258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
Abstract
Hereditary hearing loss is highly heterogeneous. Despite over 120 non-syndromic deafness genes have been identified, there are still some of novel genes and variants being explored. In the study, we investigated 105 Chinese Han children with non-syndromic, prelingual, severe-profound hearing loss by whole-exome sequencing on DNA samples. The most common deafness gene was GJB2, mainly in variant c.235delC (p.Leu79CysfsTer3). 14 children were identified with pathogenic mutations in three genes, GJB2, SLC26A4, and OTOF. Two mutations have been identified to be pathogenic and not recorded previously, including c.4691G > A (p.Trp1564Ter) and c.3928_3930dup (p.Lys1310dup) in OTOF. The rare variants c.1349G > A (p.Arg450His) and c.456 T > G (p.Asn152Lys) in GSDME, and c.1595G > T (p.Ser532Ile) in SLC26A4 were detected. The frequency of nonsense variant c.2359G > T (p.Glu787Ter) in OTOA was very high in 17 cases. Four of them were identified to be digenic inheritance, including GJB2 and COL4A4, GJB2 and EYA1, GJB2 and COL4A5, and GJB2 and DFNA5. The findings showed that a novel pathogenic variant and rare variants may be associated with severe and profound hearing loss.
Collapse
|
18
|
Savenko IV, Garbaruk ES, Boboshko MY. [The issue of auditory neuropathy: from origins to the present]. Vestn Otorinolaringol 2022; 87:60-69. [PMID: 35274894 DOI: 10.17116/otorino20228701160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The issue of auditory neuropathy spectrum disorders (ANSD) has been in a focus of specialists attention for a relatively short time, but during this time a huge amount of scientific and practical knowledge about this hearing disorder has been accumulated. ANSD is a specific auditory deficit caused by dysfunction of periphery part of the auditory system, which may affect the inner hair cells, the spiral ganglion neurons and the auditory nerve, as well as the area of synaptic contact between them, while the outer hair cells, as a rule, remain intact. As a result, a specific condition is formed, in which a patient's otoacoustic emissions and/or cochlear microphonics are present, auditory brainstem responses are abnormal or absent, electrophysiological data may not correlate with hearing level, the discrepancy between pure tone audiometry and speech discrimination is observed. ANSD prevalence, epidemiology, contemporary views on its etiology, including detailed information on hereditary forms of the disorder and its risk factors are considered in the review. The data on the basic rungs of the ANSD pathogenesis, which underlie the development of various forms of the disorder and mainly determine the rehabilitation approach, are presented. The detailed clinical and audiological characteristics of ANSD are presented; contemporary approach to ANSD diagnosis and rehabilitation, including indications for surgical treatment, are considered.
Collapse
Affiliation(s)
- I V Savenko
- Pavlov State Medical University, St. Petersburg, Russia
| | - E S Garbaruk
- Pavlov State Medical University, St. Petersburg, Russia.,St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - M Yu Boboshko
- Pavlov State Medical University, St. Petersburg, Russia.,Mechnikov North-Western State Medical University, St. Petersburg, Russia
| |
Collapse
|
19
|
Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4440. [PMID: 34972291 PMCID: PMC10880747 DOI: 10.1121/10.0007484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Although clinical use of the auditory brainstem response (ABR) to detect retrocochlear disorders has been largely replaced by imaging in recent years, the discovery of cochlear synaptopathy has thrown this foundational measure of auditory function back into the spotlight. Whereas modern imaging now allows for the noninvasive detection of vestibular schwannomas, imaging technology is not currently capable of detecting cochlear synaptopathy, the loss of the synaptic connections between the inner hair cells and afferent auditory nerve fibers. However, animal models indicate that the amplitude of the first wave of the ABR, a far-field evoked potential generated by the synchronous firing of auditory nerve fibers, is highly correlated with synaptic integrity. This has led to many studies investigating the use of the ABR as a metric of synaptopathy in humans. However, these studies have yielded mixed results, leading to a lack of consensus about the utility of the ABR as an indicator of synaptopathy. This review summarizes the animal and human studies that have investigated the ABR as a measure of cochlear synaptic function, discusses factors that may have contributed to the mixed findings and the lessons learned, and provides recommendations for future use of this metric in the research and clinical settings.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System Portland, Oregon 97239, USA
| |
Collapse
|
20
|
Santarelli R, Scimemi P, La Morgia C, Cama E, del Castillo I, Carelli V. Electrocochleography in Auditory Neuropathy Related to Mutations in the OTOF or OPA1 Gene. Audiol Res 2021; 11:639-652. [PMID: 34940017 PMCID: PMC8698970 DOI: 10.3390/audiolres11040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory Neuropathy (AN) is characterized by disruption of temporal coding of acoustic signals in auditory nerve fibers resulting in alterations of auditory perceptions. Mutations in several genes have been associated to the most forms of AN. Underlying mechanisms include both pre-synaptic and post-synaptic damage involving inner hair cell (IHC) depolarization, neurotransmitter release, spike initiation in auditory nerve terminals, loss of auditory fibers and impaired conduction. In contrast, outer hair cell (OHC) activities (otoacoustic emissions [OAEs] and cochlear microphonic [CM]) are normal. Disordered synchrony of auditory nerve activity has been suggested as the basis of both the alterations of auditory brainstem responses (ABRs) and reduction of speech perception. We will review how electrocochleography (ECochG) recordings provide detailed information to help objectively define the sites of auditory neural dysfunction and their effect on receptor summating potential (SP) and neural compound action potential (CAP), the latter reflecting disorders of ribbon synapses and auditory nerve fibers.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
- Correspondence:
| | - Pietro Scimemi
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (C.L.M.); (V.C.)
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Elona Cama
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (C.L.M.); (V.C.)
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
21
|
Santarelli R, Scimemi P, Costantini M, Domínguez-Ruiz M, Rodríguez-Ballesteros M, del Castillo I. Cochlear Synaptopathy due to Mutations in OTOF Gene May Result in Stable Mild Hearing Loss and Severe Impairment of Speech Perception. Ear Hear 2021; 42:1627-1639. [PMID: 33908410 PMCID: PMC9973442 DOI: 10.1097/aud.0000000000001052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/15/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Congenital profound hearing loss with preserved cochlear outer hair cell activity (otoacoustic emissions and cochlear microphonic) is the most common phenotype associated with mutations in the OTOF gene. The aim of this study was to investigate the pathophysiological mechanisms behind the auditory dysfunction in five patients (2 adults and 3 children) carrying biallelic mutations in OTOF, who showed an uncommon phenotype of mild hearing impairment associated with severe difficulties in speech perception and delay of language development. DESIGN Patients underwent audiometric assessment with pure-tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded in all subjects through transtympanic electrocochleography in response to clicks delivered in the free field from 120 to 60 dB peak equivalent SPL and were compared to recordings obtained from 20 normally hearing controls and from eight children with profound deafness due to mutations in the OTOF gene. Three patients out of five underwent unilateral cochlear implantation. Speech perception measures and electrically evoked auditory nerve potentials were obtained within 1 year of cochlear implant use. RESULTS Pathogenic mutations in the two alleles of OTOF were found in all five patients, and five novel mutations were identified. Hearing thresholds indicated mild hearing loss in four patients and moderate hearing loss in one. Distortion product otoacoustic emissions were recorded in all subjects, whereas auditory brainstem responses were absent in all but two patients, who showed a delayed wave V in one ear. In electrocochleography recordings, cochlear microphonics and summating potentials showed normal latency and peak amplitude, consistently with preservation of both outer and inner hair cell activity. In contrast, the neural compound action potential recorded in normally hearing controls was replaced by a prolonged, low-amplitude negative response. No differences in cochlear potentials were found between OTOF subjects showing mild or profound hearing loss. Electrical stimulation through the cochlear implant improved speech perception and restored synchronized auditory nerve responses in all cochlear implant recipients. CONCLUSIONS These findings indicate that disordered synchrony in auditory fiber activity underlies the impairment of speech perception in patients carrying biallelic mutations in OTOF gene who show a stable phenotype of mild hearing loss. Abnormal nerve synchrony with preservation of hearing sensitivity is consistent with selective impairment of vesicle replenishment at the ribbon synapses with relative preservation of synaptic exocytosis. Cochlear implants are effective in restoring speech perception and synchronous activation of the auditory pathway by directly stimulating auditory fibers.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padua, Padua, Italy
- Audiology Service, Santi Giovanni e Paolo Hospital, Venezia, Italy
| | - Pietro Scimemi
- Department of Neurosciences, University of Padua, Padua, Italy
- Audiology Service, Santi Giovanni e Paolo Hospital, Venezia, Italy
| | | | - María Domínguez-Ruiz
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
22
|
Lezirovitz K, Mingroni-Netto RC. Genetic etiology of non-syndromic hearing loss in Latin America. Hum Genet 2021; 141:539-581. [PMID: 34652575 DOI: 10.1007/s00439-021-02354-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a complex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions of admixture between the Native American, European and African components. In the first years following the findings of the role of the GJB2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar contributions of some genes, such as GJB2/GJB6, when compared to European and North American countries, Latin American populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific geographic regions.
Collapse
Affiliation(s)
- Karina Lezirovitz
- Laboratório de Otorrinolaringologia/LIM32, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Regina Célia Mingroni-Netto
- Departamento de Genética e Biologia Evolutiva, Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Abstract
Patients with auditory neuropathy (AN)/auditory synaptopathy (AS) present unique evaluation and management challenges. Communication ability using auditory stimuli varies among patients, with particular difficulty understanding speech in noise. Auditory physiologic responses are key to accurate identification and monitoring of patients with AN/AS. Management approaches should consider individual variation and the possibility of change over time. Many patients with accurately characterized AN/AS demonstrate success with cochlear implants. Areas of discovery, including understanding of synaptic and neural mechanisms, genotype/phenotype relationships, and use of cochlear and cortical evoked potentials, will promote accurate clinical evaluation and management of infants, children, and adults with AN/AS.
Collapse
|
24
|
Qi Y, Gong S, Liu K, Song Y. The c.824C>A and c.616dupA mutations in the SLC17a8 gene are associated with auditory neuropathy and lead to defective expression of VGluT3. Neuroreport 2021; 32:949-956. [PMID: 34145196 DOI: 10.1097/wnr.0000000000001687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Auditory neuropathy is sensorineural deafness where sound signals cannot be transmitted synchronously from the cochlea to the auditory center. Abnormal expression of vesicle glutamate transporter 3 (VGluT3) encoded by the SLC17a8 gene is associated with the pathophysiology of auditory neuropathy. Although several suspected pathogenic mutations of the SLC17a8 gene have been identified in humans, few studies have confirmed their pathogenicity. Here, we describe the effects of two known suspected pathogenic mutations (c.824C>A and c.616dupA) in the SLC17a8 gene coding VGluT3 protein and analyzed the potential pathogenicity of these mutations. The p.M206Nfs4 and p.A275D changes are caused by c.824C>A and c.616dupA mutations in the cytoplasmic loop, an important structure of VGluT3. To explore the potential pathogenic effects of c.824C>A and c.616dupA mutations, we performed a series of experiments on mRNA levels and protein expression in cell culture. The c.616dupA mutation in the SLC17a8 gene resulted in a significant decrease in transcriptional activity of mRNA, and the expression of VGluT3 was also reduced. The c.824C>A mutation in the SLC17a8 gene resulted in abnormal VGluT3, although this mutation did not affect the transcriptional activity of mRNA. Our results demonstrate that c.824C>A and c.616dupA mutations in the SLC17a8 gene could lead to pathological protein expression of VGluT3 and supported the potential pathogenicity of these mutations.
Collapse
Affiliation(s)
- Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
25
|
Stalmann U, Franke AJ, Al-Moyed H, Strenzke N, Reisinger E. Otoferlin Is Required for Proper Synapse Maturation and for Maintenance of Inner and Outer Hair Cells in Mouse Models for DFNB9. Front Cell Neurosci 2021; 15:677543. [PMID: 34335185 PMCID: PMC8316924 DOI: 10.3389/fncel.2021.677543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Deficiency of otoferlin causes profound prelingual deafness in humans and animal models. Here, we closely analyzed developmental deficits and degenerative mechanisms in Otof knock-out (Otof–/–) mice over the course of 48 weeks. We found otoferlin to be required for proper synapse development in the immature rodent cochlea: In absence of otoferlin, synaptic pruning was delayed, and postsynaptic boutons appeared enlarged at 2 weeks of age. At postnatal day 14 (P14), we found on average ∼15 synapses per inner hair cell (IHC) in Otof–/– cochleae as well as in wild-type controls. Further on, the number of synapses in Otof–/– IHCs was reduced to ∼7 at 8 weeks of age and to ∼6 at 48 weeks of age. In the same period, the number of spiral ganglion neurons (SGNs) declined in Otof–/– animals. Importantly, we found an age-progressive loss of IHCs to an overall number of 75% of wildtype IHCs. The IHC loss more prominently but not exclusively affected the basal aspects of the cochlea. For outer hair cells (OHCs), we observed slightly accelerated age-dependent degeneration from base to apex. This was associated with a progressive decay in DPOAE amplitudes for high frequency stimuli, which could first be observed at the age of 24 weeks in Otof–/– mice. Our data will help to plan and predict the outcome of a gene therapy applied at various ages of DFNB9 patients.
Collapse
Affiliation(s)
- Ursula Stalmann
- Auditory Systems Physiology Group, Department of Otolaryngology and Institute for Auditory Neuroscience, SFB 889 project A06, University Medical Center Göttingen, Göttingen, Germany
| | - Albert Justin Franke
- Auditory Systems Physiology Group, Department of Otolaryngology and Institute for Auditory Neuroscience, SFB 889 project A06, University Medical Center Göttingen, Göttingen, Germany
| | - Hanan Al-Moyed
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Auditory Systems Physiology Group, Department of Otolaryngology and Institute for Auditory Neuroscience, SFB 889 project A06, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Gene Therapy for Hearing Impairment Group, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
26
|
Abstract
OBJECTIVE Given the heterogeneity of papers about electrocochleography (ECochG) and cochlear implantation (CI) and the absence of a systematic review in the current literature, the aim of this work was to analyze the uses of ECochG in the different stages of CI. DATA SOURCES A search of PubMed from inception to December 8, 2019, with cross-references, was executed. Keywords were: "Cochlear Implant" OR "Cochlear Implantation" AND "Electrocochleography" OR "ECochG." The main eligibility criteria were English-language articles, investigating the use of ECochG in the different phases of CI. STUDY SELECTION Literature reviews, editorials, case reports, conference papers were excluded, as were papers in which ECochG was just sporadically executed. DATA EXTRACTION The quality of the included studies was assessed using "The Strengthening the Reporting of Observational Studies in Epidemiology" (STROBE) Statement. DATA SYNTHESIS A total of 95 articles were identified and 60 papers were included. The included articles covered a timeframe from 2003 to 2019. Of the 60 papers, 46 were human studies, 12 animal studies, and two involved more data sets. Eleven related to the diagnostic phase, 43 described intraoperative monitoring, and 10 were regarding follow-up testing. Hearing preservation was the most discussed topic with 25 included articles. CONCLUSIONS AND RELEVANCE ECochG measurements appeared to be useful in many aspects of CI, such as hearing preservation. Our review is the first that shows the evolution of the technique and how much has been achieved from the earliest experiments to the most recent signal process refinements and device implementation in CI.
Collapse
|
27
|
Wrobel C, Zafeiriou MP, Moser T. Understanding and treating paediatric hearing impairment. EBioMedicine 2021; 63:103171. [PMID: 33422987 PMCID: PMC7808910 DOI: 10.1016/j.ebiom.2020.103171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing impairment is the most frequent form of hearing impairment affecting 1-2 in 1000 newborns and another 1 in 1000 adolescents. More than 50% of congenital hearing impairment is of genetic origin and some forms of monogenic deafness are likely targets for future gene therapy. Good progress has been made in clinical phenotyping, genetic diagnostics, and counselling. Disease modelling, e.g. in transgenic mice, has helped elucidate disease mechanisms underlying genetic hearing impairment and informed clinical phenotyping in recent years. Clinical management of paediatric hearing impairment involves hearing aids, cochlear or brainstem implants, signal-to-noise improvement in educational settings, speech therapy, and sign language. Cochlear implants, for example, have much improved the situation of profoundly hearing impaired and deaf children. Nonetheless there remains a major unmet clinical need for improving hearing restoration. Preclinical studies promise that we will witness clinical trials on gene therapy and a next generation of cochlear implants during the coming decade. Moreover, progress in generating sensory hair cells and neurons from stem cells spurs disease modelling, drug screening, and regenerative approaches. This review briefly summarizes the pathophysiology of paediatric hearing impairment and provides an update on the current preclinical development of innovative approaches toward improved hearing restoration.
Collapse
Affiliation(s)
- Christian Wrobel
- Department of Otolaryngology and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany
| | - Maria-Patapia Zafeiriou
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Tobias Moser
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany.
| |
Collapse
|
28
|
Rankovic V, Vogl C, Dörje NM, Bahader I, Duque-Afonso CJ, Thirumalai A, Weber T, Kusch K, Strenzke N, Moser T. Overloaded Adeno-Associated Virus as a Novel Gene Therapeutic Tool for Otoferlin-Related Deafness. Front Mol Neurosci 2021; 13:600051. [PMID: 33488357 PMCID: PMC7817888 DOI: 10.3389/fnmol.2020.600051] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/04/2020] [Indexed: 01/19/2023] Open
Abstract
Hearing impairment is the most common sensory disorder in humans. So far, rehabilitation of profoundly deaf subjects relies on direct stimulation of the auditory nerve through cochlear implants. However, in some forms of genetic hearing impairment, the organ of Corti is structurally intact and therapeutic replacement of the mutated gene could potentially restore near natural hearing. In the case of defects of the otoferlin gene (OTOF), such gene therapy is hindered by the size of the coding sequence (~6 kb) exceeding the cargo capacity (<5 kb) of the preferred viral vector, adeno-associated virus (AAV). Recently, a dual-AAV approach was used to partially restore hearing in deaf otoferlin knock-out (Otof-KO) mice. Here, we employed in vitro and in vivo approaches to assess the gene-therapeutic potential of naturally-occurring and newly-developed synthetic AAVs overloaded with the full-length Otof coding sequence. Upon early postnatal injection into the cochlea of Otof-KO mice, overloaded AAVs drove specific expression of otoferlin in ~30% of all IHCs, as demonstrated by immunofluorescence labeling and polymerase chain reaction. Recordings of auditory brainstem responses and a behavioral assay demonstrated partial restoration of hearing. Together, our results suggest that viral gene therapy of DFNB9—using a single overloaded AAV vector—is indeed feasible, reducing the complexity of gene transfer compared to dual-AAV approaches.
Collapse
Affiliation(s)
- Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Nele M Dörje
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Iman Bahader
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group, Institute for Auditory Neuroscience and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Anupriya Thirumalai
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Weber
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group, Institute for Auditory Neuroscience and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| |
Collapse
|
29
|
Zhan KY, Adunka OF, Eshraghi A, Riggs WJ, Prentiss SM, Yan D, Telischi FF, Liu X, He S. Electrophysiology and genetic testing in the precision medicine of congenital deafness: A review. J Otol 2021; 16:40-46. [PMID: 33505449 PMCID: PMC7814082 DOI: 10.1016/j.joto.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital hearing loss is remarkably heterogeneous, with over 130 deafness genes and thousands of variants, making for innumerable genotype/phenotype combinations. Understanding both the pathophysiology of hearing loss and molecular site of lesion along the auditory pathway permits for significantly individualized counseling. Electrophysiologic techniques such as electrocochleography (ECochG) and electrically-evoked compound action potentials (eCAP) are being studied to localize pathology and estimate residual cochlear vs. neural health. This review describes the expanding roles of genetic and electrophysiologic evaluation in the precision medicine of congenital hearing loss.The basics of genetic mutations in hearing loss and electrophysiologic testing (ECochG and eCAP) are reviewed, and how they complement each other in the diagnostics and prognostication of hearing outcomes. Used together, these measures improve the understanding of insults to the auditory system, allowing for individualized counseling for CI candidacy/outcomes or other habilitation strategies. CONCLUSION Despite tremendous discovery in deafness genes, the effects of individual genes on neural function remain poorly understood. Bridging the understanding between molecular genotype and neural and functional phenotype is paramount to interpreting genetic results in clinical practice. The future hearing healthcare provider must consolidate an ever-increasing amount of genetic and phenotypic information in the precision medicine of hearing loss.
Collapse
Affiliation(s)
- Kevin Y. Zhan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F. Adunka
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrien Eshraghi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J. Riggs
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sandra M. Prentiss
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
30
|
Vona B, Rad A, Reisinger E. The Many Faces of DFNB9: Relating OTOF Variants to Hearing Impairment. Genes (Basel) 2020; 11:genes11121411. [PMID: 33256196 PMCID: PMC7768390 DOI: 10.3390/genes11121411] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
The OTOF gene encodes otoferlin, a critical protein at the synapse of auditory sensory cells, the inner hair cells (IHCs). In the absence of otoferlin, signal transmission of IHCs fails due to impaired release of synaptic vesicles at the IHC synapse. Biallelic pathogenic and likely pathogenic variants in OTOF predominantly cause autosomal recessive profound prelingual deafness, DFNB9. Due to the isolated defect of synaptic transmission and initially preserved otoacoustic emissions (OAEs), the clinical characteristics have been termed "auditory synaptopathy". We review the broad phenotypic spectrum reported in patients with variants in OTOF that includes milder hearing loss, as well as progressive and temperature-sensitive hearing loss. We highlight several challenges that must be addressed for rapid clinical and genetic diagnosis. Importantly, we call for changes in newborn hearing screening protocols, since OAE tests fail to diagnose deafness in this case. Continued research appears to be needed to complete otoferlin isoform expression characterization to enhance genetic diagnostics. This timely review is meant to sensitize the field to clinical characteristics of DFNB9 and current limitations in preparation for clinical trials for OTOF gene therapies that are projected to start in 2021.
Collapse
|
31
|
Wu K, Wang H, Guan J, Lan L, Zhao C, Zhang M, Wang D, Wang Q. A novel variant in diaphanous homolog 1 (DIAPH1) as the cause of auditory neuropathy in a Chinese family. Int J Pediatr Otorhinolaryngol 2020; 133:109947. [PMID: 32087478 DOI: 10.1016/j.ijporl.2020.109947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To determine the genetic cause of non-syndromic autosomal dominant deafness segregating in a Chinese Auditory neuropathy (AN) family. INTRODUCTION AN is a genetically related rare disease characterized by sensorineural hearing loss and retention of hair cell function. Diaphanous Homolog 1 (DIAPH1) is the causative gene of DFNA1. To date, no evidence has been detected to reveal the connection between gene DIAPH1 and AN. MATERIAL AND METHODS Audiological and imageological examinations, genome-wide linkage analysis, and whole exome sequencing (WES) were carried out on the family members. RESULTS In the 13-member branch of the family, 4 patients with preserved otoacoustic emission or cochlear microphonic and abnormal auditory brainstem responses were diagnosed with AN. Linkage analysis detected an interval with a LOD (log odds) score >4 on chr5:138.845-149.509 cM. Using WES we identified a novel frameshift variant c.3551_3552del (p.Glu1184AlafsTer11) in exon 26 of DIAPH1 located in the linkage region. The variant was co-segregated with hearing impairment phenotype in the family except 4 members below the average age of onset. We have found sufficient evidence conforming with the American College of Medical Genetics and Genomics Guideline to consider c.3551_3552del as the genetic cause of the family patients. CONCLUSION It is the first report to expand DIAPH1-related phenotypic spectrum to include AN. Our findings could facilitate the clinical diagnosis and genetic counselling for AN, especially for those with DIAPH1 variants.
Collapse
Affiliation(s)
- Kan Wu
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyang Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Guan
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lan Lan
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Cui Zhao
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengqian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dayong Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiuju Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
32
|
Zheng D, Liu X. Cochlear Implantation Outcomes in Patients With OTOF Mutations. Front Neurosci 2020; 14:447. [PMID: 32508568 PMCID: PMC7253664 DOI: 10.3389/fnins.2020.00447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Auditory neuropathy is a special type of hearing loss caused by dysfunction of the synapse of the inner hair cells, the auditory nerve, and/or the auditory nerve itself. For patients with auditory neuropathy who have severe to profound hearing loss or failed auditory skills development with hearing-aids, cochlear implantation (CI) serves as the only possible effective treatment. It is accepted that the exact sites of lesion causing auditory neuropathy determine the CI performance. Mutations in the OTOF gene were the first identified and the most common cause of congenital auditory neuropathy. The site of lesion in patients with auditory neuropathy caused by biallelic OTOF mutations (OTOF-related auditory neuropathy) is presumed to be presynaptic, leaving auditory nerve function intact. Thus, OTOF-related auditory neuropathy is expected to have good CI performances. In this review, we describe the CI outcomes in patients with OTOF mutations. We will focus on whether biallelic OTOF mutations are ideal indications for CI in patients with auditory neuropathy. Also, the factors that may still influence the CI outcomes in patients with OTOF mutations are discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Otorhinolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Liu
- Department of Otorhinolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. J Clin Med 2020; 9:jcm9041074. [PMID: 32290039 PMCID: PMC7230308 DOI: 10.3390/jcm9041074] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by deteriorated speech perception, despite relatively preserved pure-tone detection thresholds. Affected individuals usually present with abnormal auditory brainstem responses (ABRs), but normal otoacoustic emissions (OAEs). These electrophysiological characteristics have led to the hypothesis that ANSD may be caused by various dysfunctions at the cochlear inner hair cell (IHC) and spiral ganglion neuron (SGN) levels, while the activity of outer hair cells (OHCs) is preserved, resulting in discrepancies between pure-tone and speech comprehension thresholds. The exact prevalence of ANSD remains unknown; clinical findings show a large variability among subjects with hearing impairment ranging from mild to profound hearing loss. A wide range of prenatal and postnatal etiologies have been proposed. The study of genetics and of the implicated sites of lesion correlated with clinical findings have also led to a better understanding of the molecular mechanisms underlying the various forms of ANSD, and may guide clinicians in better screening, assessment and treatment of ANSD patients. Besides OAEs and ABRs, audiological assessment includes stapedial reflex measurements, supraliminal psychoacoustic tests, electrocochleography (ECochG), auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs). Hearing aids are indicated in the treatment of ANSD with mild to moderate hearing loss, whereas cochlear implantation is the first choice of treatment in case of profound hearing loss, especially in case of IHC presynaptic disorders, or in case of poor auditory outcomes with conventional hearing aids.
Collapse
|
34
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
35
|
|
36
|
Shearer AE, Hansen MR. Auditory synaptopathy, auditory neuropathy, and cochlear implantation. Laryngoscope Investig Otolaryngol 2019; 4:429-440. [PMID: 31453354 PMCID: PMC6703118 DOI: 10.1002/lio2.288] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/17/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Cochlear implantation has become the standard-of-care for adults and children with severe to profound hearing loss. There is growing evidence that qualitative as well as quantitative deficits in the auditory nerve may affect cochlear implant (CI) outcomes. Auditory neuropathy spectrum disorder (ANSD) is characterized by dysfunctional transmission of sound from the cochlea to the brain due to defective synaptic function or neural conduction. In this review, we examine the precise mechanisms of genetic lesions causing ANSD and the effect of these lesions on CI outcomes. Reviewed data show that individuals with lesions that primarily affect the cochlear sensory system and the synapse, which are bypassed by the CI, have optimal CI outcomes. Individuals with lesions that affect the auditory nerve show poor performance with CIs, likely because neural transmission of the electrical signal from the CI is affected. We put forth a nuanced molecular classification of ANSD that has implications for preoperative counseling for patients with this disorder prior to cochlear implantation. We propose that description of ANSD patients should be based on the molecular site of lesion typically derived from genetic evaluation (synaptopathy vs. neuropathy) as this has implications for expected CI outcomes. Improvements in our understanding of genetic site of lesions and their effects on CI function should lead to better CI outcomes, not just for individuals with auditory neuropathy, but all individuals with hearing loss.
Collapse
Affiliation(s)
- Aiden Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A.,Department of Neurosurgery University of Iowa Carver College of Medicine Iowa City Iowa U.S.A
| |
Collapse
|
37
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
38
|
Takago H, Oshima-Takago T, Moser T. Disruption of Otoferlin Alters the Mode of Exocytosis at the Mouse Inner Hair Cell Ribbon Synapse. Front Mol Neurosci 2019; 11:492. [PMID: 30687007 PMCID: PMC6338019 DOI: 10.3389/fnmol.2018.00492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/19/2018] [Indexed: 11/24/2022] Open
Abstract
Sound encoding relies on Ca2+-mediated exocytosis at the ribbon synapse between cochlear inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Otoferlin, a multi-C2 domain protein, is proposed to regulate Ca2+-triggered exocytosis at this synapse, but the precise mechanisms of otoferlin function remain to be elucidated. Here, performing whole-cell voltage-clamp recordings of excitatory postsynaptic currents (EPSCs) from SGNs in otoferlin mutant mice, we investigated the impact of Otof disruption at individual synapses with single release event resolution. Otof deletion decreased the spontaneous release rate and abolished the stimulus-secretion coupling. This was evident from failure of potassium-induced IHC depolarization to stimulate release and supports the proposed role of otoferlin in Ca2+ sensing for fusion. A missense mutation in the Otof gene (pachanga), in which otoferlin level at the IHC plasma membrane was lowered without changing its Ca2+ binding, also reduced the spontaneous release rate but spared the stimulus-secretion coupling. The slowed stimulated release rate supports the hypothesis that a sufficient abundance of otoferlin at the plasma membrane is crucial for the vesicle supply. Large-sized monophasic EPSCs remained present upon Otof deletion despite the drastic reduction of the rate of exocytosis. However, EPSC amplitude, on average, was modestly decreased. Moreover, a reduced contribution of multiphasic EPSC was observed in both Otof mutants. We argue that the presence of large monophasic EPSCs despite the exocytic defect upon Otof deletion supports the uniquantal hypothesis of transmitter release at the IHC ribbon synapse. Based upon the reduced contribution of multiphasic EPSC, we propose a role of otoferlin in regulating the mode of exocytosis in IHCs.
Collapse
Affiliation(s)
- Hideki Takago
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan.,Collaborative Research Center 889 Cellular Mechanisms of Sensory Processing, Göttingen, Germany
| | - Tomoko Oshima-Takago
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan.,Collaborative Research Center 889 Cellular Mechanisms of Sensory Processing, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889 Cellular Mechanisms of Sensory Processing, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
39
|
Chen K, Liu M, Wu X, Zong L, Jiang H. Targeted next generation sequencing reveals OTOF mutations in auditory neuropathy spectrum disorder. Int J Pediatr Otorhinolaryngol 2018; 115:19-23. [PMID: 30368385 DOI: 10.1016/j.ijporl.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/05/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To study the genetic etiology of auditory neuropathy spectrum disorder (ANSD) in a Chinese family and perform a literature review of OTOF mutations and cochlear implantation (CI). METHODS Sequential targeted next generation sequencing (NGS) and CI was performed for the proband. Further, 50 DNA samples from unrelated families with nonsyndromic deafness were examined for frequency determination. The impact of OTOF mutations on hearing recovery after CI was assessed through the literature survey. RESULTS In the proband, the targeted NGS panel revealed five suspected variants in four genes (OTOF, EYA4, PCDH15, and GIPC3), of which two mutations-c.5098G > C (p.Glu1700Gln) and c.1702C > T (p.Arg568Trp)-in the OTOF gene were found to be correlated with ANSD. The c.5098G > C allele was identified in only one child from the 50 unrelated participants. The proband's hearing and speech abilities were restored 2 years after the surgery. Most ANSD patients (90.9%; 30/33) with OTOF mutations have acceptable surgical outcomes, as indicated by existing reports. CONCLUSIONS Our results support the feasibility of CI for patients with ANSD and OTOF mutations, and this hypothesis was supported by the review of existing data. A larger number of cases studies is required to determine possible modifies on the prognosis of surgery.
Collapse
Affiliation(s)
- Kaitian Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Min Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Xuan Wu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University and Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Ling Zong
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Hainan General Hospital, Haikou, 570311, PR China.
| |
Collapse
|
40
|
Kim BJ, Jang JH, Han JH, Park HR, Oh DY, Lee S, Kim MY, Kim AR, Lee C, Kim NKD, Park WY, Choung YH, Choi BY. Mutational and phenotypic spectrum of OTOF-related auditory neuropathy in Koreans: eliciting reciprocal interaction between bench and clinics. J Transl Med 2018; 16:330. [PMID: 30482216 PMCID: PMC6260760 DOI: 10.1186/s12967-018-1708-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While auditory neuropathy spectrum disorder (ANSD) is a heterogeneous disorder and its management quite varies depending upon the etiology, even including self-resolution, OTOF is an important molecular etiology of prelingual ANSD and has emerged as an attractive target for implementation of precision medicine in terms of timing and prognosis prediction of auditory rehabilitation. However, to date, the literature is lacking in the genotype-phenotype relationship of this gene as well as efficient molecular testing strategy in the clinic in many populations and to make things more complicated in Koreans, the most prevalent variant p.Arg1939Gln among Korean ANSD children frequently evaded detection by next generation sequencing (NGS), resulting in delayed genetic diagnosis and late cochlear implantation (CI). The aims of this study are to document the mutational and phenotypic spectrum of OTOF-related ANSD (DFNB9) in the Korean population, further establishing genotype-phenotype correlation and proposing a set of the most commonly found OTOF variants to be screened first. METHODS Genetic diagnosis through the NGS-based sequencing was made on patients with ANSD in two tertiary hospitals. Genotype and phenotypes of eleven DFNB9 patients were reviewed. For data analysis, Mann-Whitney test and Fisher's exact test were applied. RESULTS This study disclosed four prevalent variants in Koreans: p.Arg1939Gln with an allele frequency of 40.9%, p.Glu841Lys (13.6%), p.Leu1011Pro and p.Arg1856Trp (9.1%). Three novel variants (c.4227 + 5G > C, p.Gly1845Glu, and p.Pro1931Thr) were identified. Interestingly, a significant association of p.Arg1939Gln with worse ASSR thresholds was observed despite consistently no ABR response. Ten of 11 DFNB9 patients received CI for auditory rehabilitation, showing favorable outcomes with more rapid improvement on early-CI group (age at CI ≤ 18 mo.) than late-CI group. CONCLUSIONS This study included the largest Korean DFNB9 cohort to date and proposed a set of the most frequent four OTOF variants, allowing the potential prioritization of exons during Sanger sequencing. Further, a significant association of p.Arg1939Gln homozygotes with poor residual hearing was observed. We may have to suspect p.Arg1939Gln homozygosity in cases of poor auditory thresholds in ANSD children with putative negative OTOF variants solely screened by NGS. Reciprocal feedback between bench and clinics regarding DFNB9 would complement each other.
Collapse
Affiliation(s)
- Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Jeong Hun Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Hye-Rim Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Doo Yi Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Seungmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea
| | - Ah Reum Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.,Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul, 06351, Korea
| | - Yun-Hoon Choung
- Department of Otorhinolaryngology-Head and Neck Surgery, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of South Korea. .,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea.
| |
Collapse
|
41
|
Wang Y, Lu Y, Cheng J, Zhang L, Han D, Yuan H. Novel OTOF gene mutations identified using a massively parallel DNA sequencing technique in DFNB9 deafness. Acta Otolaryngol 2018; 138:865-870. [PMID: 30073893 DOI: 10.1080/00016489.2018.1476777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES This study examined the causative genes in patients with early-onset hearing loss from two Chinese families. METHOD Massively parallel sequencing, designed to screen all reported genes associated with hearing loss, was performed in a large number of Chinese individuals with hearing loss. This study enrolled patients with the same OTOF mutation and analyzed their phenotype-genotype correlations. RESULTS Three novel OTOF mutations (NM_001287489) [c.1550T > C (p.L517P), c.5900_5902delTCA (p.I1967del), and c.4669_4677delCTGACGGTG (p.L1557-V1559del)] were found to be the cause of hearing loss in five patients. In family AH-890, the affected subject homozygous for p.L517P presented with profound hearing loss, while the affected sisters compound heterozygous for p.L517P and p.I1967del had mild-to-moderate hearing loss. The patient with hearing loss in family SD-345 was found to be compound heterozygous for p.L517P and p.L1557-V1559del. CONCLUSION Three presumably pathogenic mutations in the OTOF gene were detected for the first time, including the first pathogenic mutation detected in the TM domain. In addition to expanding the spectrum of OTOF mutations resulting in DFNB9, our findings present the diversity of its clinical presentation and indicate that MPS is an efficient approach to identify the causative genes associated with hereditary hearing loss.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yu Lu
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jing Cheng
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lei Zhang
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dongyi Han
- Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Huijun Yuan
- Medical Genetics Center, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
42
|
Kindt KS, Sheets L. Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish. Front Cell Dev Biol 2018; 6:114. [PMID: 30258843 PMCID: PMC6143809 DOI: 10.3389/fcell.2018.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Sensorineural hearing loss is the most common form of hearing loss in humans, and results from either dysfunction in hair cells, the sensory receptors of sound, or the neurons that innervate hair cells. A specific type of sensorineural hearing loss, referred to as auditory synaptopathy, occurs when hair cells are able to detect sound but fail to transmit sound stimuli at the hair-cell synapse. Auditory synaptopathy can originate from genetic alterations that specifically disrupt hair-cell synapse function. Additionally, environmental factors such as noise exposure can leave hair cells intact but result in loss of hair-cell synapses, and represent an acquired form of auditory synaptopathy. The zebrafish model has emerged as a valuable system for studies of hair-cell function, and specifically hair-cell synaptopathy. In this review, we describe the experimental tools that have been developed to study hair-cell synapses in zebrafish. We discuss how zebrafish genetics has helped identify and define the roles of hair-cell synaptic proteins crucial for hearing in humans, and highlight how studies in zebrafish have contributed to our understanding of hair-cell synapse formation and function. In addition, we also discuss work that has used noise exposure or pharmacological mimic of noise-induced excitotoxicity in zebrafish to define cellular mechanisms underlying noise-induced hair-cell damage and synapse loss. Lastly, we highlight how future studies in zebrafish could enhance our understanding of the pathological processes underlying synapse loss in both genetic and acquired auditory synaptopathy. This knowledge is critical in order to develop therapies that protect or repair auditory synaptic contacts.
Collapse
Affiliation(s)
- Katie S. Kindt
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
43
|
Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss. Ear Hear 2018; 38:184-193. [PMID: 28225734 DOI: 10.1097/aud.0000000000000384] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). DESIGN The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. RESULTS The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. CONCLUSIONS Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.
Collapse
|
44
|
Wu CC, Hsu CJ, Huang FL, Lin YH, Lin YH, Liu TC, Wu CM. Timing of cochlear implantation in auditory neuropathy patients with OTOF mutations: Our experience with 10 patients. Clin Otolaryngol 2017; 43:352-357. [PMID: 28766844 DOI: 10.1111/coa.12949] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 11/27/2022]
Affiliation(s)
- C C Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - C J Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - F L Huang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Y H Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y H Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - T C Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - C M Wu
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
45
|
Lang-Roth R, Fischer-Krall E, Kornblum C, Nürnberg G, Meschede D, Goebel I, Nürnberg P, Beutner D, Kubisch C, Walger M, Volk AE. AUNA2: A Novel Type of Non-Syndromic Slowly Progressive Auditory Synaptopathy/Auditory Neuropathy with Autosomal-Dominant Inheritance. Audiol Neurootol 2017; 22:30-40. [PMID: 28601886 DOI: 10.1159/000474929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Auditory synaptopathy/neuropathy (AS/AN) is a heterogeneous disorder, which may be caused by environmental factors like postnatal hyperbilirubinemia or by genetic factors. The genetic forms are subdivided into syndromic and non-syndromic types, and show different inheritance patterns with a strong preponderance of autosomal-recessive forms. To date, only a single locus for non-syndromic autosomal-dominant AS/AN (AUNA1) has been reported in a single family, in which a non-coding DIAPH3 mutation was subsequently described as causative. MATERIALS AND METHODS Here, we report detailed clinical data on a large German AS/AN family with slowly progressive postlingual hearing loss. Affected family members developed their first symptoms in their second decade. Moderate hearing loss in the fourth decade then progressed to profound hearing impairment in older family members. Comprehensive audiological and neurological tests were performed in the affected family members. Genetic testing comprised linkage analyses with polymorphic markers and a genome-wide linkage analysis using the Affymetrix GeneChip® Human Mapping 250K. RESULTS AND CONCLUSION We identified a large family with autosomal-dominant AS/AN. By means of linkage analyses, the AUNA1 locus was excluded, and putatively linked regions on chromosomal bands 12q24 and 13q34 were identified as likely carrying the second locus for autosomal-dominant AS/AN (AUNA2). AUNA2 is associated with a slowly progressive postlingual hearing loss without any evidence for additional symptoms in other organ systems.
Collapse
Affiliation(s)
- Ruth Lang-Roth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Sensorineural hearing impairment is the most common form of hearing loss, and encompasses pathologies of the cochlea and the auditory nerve. Hearing impairment caused by abnormal neural encoding of sound stimuli despite preservation of sensory transduction and amplification by outer hair cells is known as 'auditory neuropathy'. This term was originally coined for a specific type of hearing impairment affecting speech comprehension beyond changes in audibility: patients with this condition report that they "can hear but cannot understand". This type of hearing impairment can be caused by damage to the sensory inner hair cells (IHCs), IHC ribbon synapses or spiral ganglion neurons. Human genetic and physiological studies, as well as research on animal models, have recently shown that disrupted IHC ribbon synapse function--resulting from genetic alterations that affect presynaptic glutamate loading of synaptic vesicles, Ca(2+) influx, or synaptic vesicle exocytosis--leads to hearing impairment termed 'auditory synaptopathy'. Moreover, animal studies have demonstrated that sound overexposure causes excitotoxic loss of IHC ribbon synapses. This mechanism probably contributes to hearing disorders caused by noise exposure or age-related hearing loss. This Review provides an update on recently elucidated sensory, synaptic and neural mechanisms of hearing impairment, their corresponding clinical findings, and discusses current rehabilitation strategies as well as future therapies.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany
| | - Arnold Starr
- Center for Hearing Research, University of California, Irvine, California 92697, USA
| |
Collapse
|
47
|
Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015; 138:3141-58. [PMID: 26463676 DOI: 10.1093/brain/awv270] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023] Open
Abstract
The effects of inner ear abnormality on audibility have been explored since the early 20th century when sound detection measures were first used to define and quantify 'hearing loss'. The development in the 1970s of objective measures of cochlear hair cell function (cochlear microphonics, otoacoustic emissions, summating potentials) and auditory nerve/brainstem activity (auditory brainstem responses) have made it possible to distinguish both synaptic and auditory nerve disorders from sensory receptor loss. This distinction is critically important when considering aetiology and management. In this review we address the clinical and pathophysiological features of auditory neuropathy that distinguish site(s) of dysfunction. We describe the diagnostic criteria for: (i) presynaptic disorders affecting inner hair cells and ribbon synapses; (ii) postsynaptic disorders affecting unmyelinated auditory nerve dendrites; (iii) postsynaptic disorders affecting auditory ganglion cells and their myelinated axons and dendrites; and (iv) central neural pathway disorders affecting the auditory brainstem. We review data and principles to identify treatment options for affected patients and explore their benefits as a function of site of lesion.
Collapse
Affiliation(s)
- Gary Rance
- 1 Department of Audiology and Speech Pathology, The University of Melbourne, 550 Swanston Street, Parkville 3010 Australia
| | - Arnold Starr
- 2 Department of Neurology, The University of California (Irvine), 200 S. Manchester Ave., Suite 206, Orange, CA 92868-4280, USA
| |
Collapse
|
48
|
Moser T, Strenzke N. Synaptic encoding and processing of auditory information in physiology and disease. Hear Res 2015; 330:155-6. [PMID: 26119179 DOI: 10.1016/j.heares.2015.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Auditory Systems Physiology Group, InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| |
Collapse
|