1
|
Glavin CC, Dhar S. The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review. J Assoc Res Otolaryngol 2024:10.1007/s10162-024-00969-8. [PMID: 39592507 DOI: 10.1007/s10162-024-00969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.
Collapse
Affiliation(s)
- Courtney Coburn Glavin
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA.
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, 60208, USA
- Knowles Hearing Center, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Capshaw G, Diebold CA, Adams DM, Rayner JG, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus). Proc Biol Sci 2024; 291:20241560. [PMID: 39500378 PMCID: PMC11708781 DOI: 10.1098/rspb.2024.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
| | - Clarice A. Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD20742, USA
| | - Jack G. Rayner
- Department of Biology, University of Maryland, College Park, MD20742, USA
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, USA
| | - Amanda M. Lauer
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, USA
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
3
|
Capshaw G, Diebold CA, Adams DM, Rayner J, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603592. [PMID: 39071368 PMCID: PMC11275774 DOI: 10.1101/2024.07.15.603592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hearing mediates many behaviors critical for survival in echolocating bats, including foraging and navigation. Most mammals are susceptible to progressive age-related hearing loss; however, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in echolocating bats. Although many echolocating bats exhibit exceptional longevity and rely on acoustic behaviors for survival to old age, relatively little is known about the aging bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats ( Eptesicus fuscus ) and measured hearing sensitivity in young and aging bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in aging bats, demonstrated by comparable thresholds and similar ABR wave and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear aging, with similar hair cell counts, afferent, and efferent innervation patterns in young and aging bats. Here we demonstrate that big brown bats show minimal evidence for age-related loss of peripheral hearing sensitivity and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
|
4
|
Parker A, Parham K, Skoe E. Age-related declines to serum prestin levels in humans. Hear Res 2022; 426:108640. [DOI: 10.1016/j.heares.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
|
5
|
Pürner D, Schirkonyer V, Janssen T. Changes in the peripheral and central auditory performance in the elderly—A cross‐sectional study. J Neurosci Res 2022; 100:1791-1811. [DOI: 10.1002/jnr.25068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/02/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Dominik Pürner
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
- Department of Neurology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| | - Volker Schirkonyer
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| | - Thomas Janssen
- Department of Otorhinolaryngology, Experimental Audiology University hospital rechts der Isar of the Technical University of Munich Munich Germany
| |
Collapse
|
6
|
Favaretto N. Are hearing and olfaction disorders more common in older patients with diabetes? Are hearing loss and olfactive disfunction a risk factor for progression of functional decline and disability? JOURNAL OF GERONTOLOGY AND GERIATRICS 2021. [DOI: 10.36150/2499-6564-n453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Prestin derived OHC surface area reduction underlies age-related rescaling of frequency place coding. Hear Res 2021; 423:108406. [PMID: 34933788 DOI: 10.1016/j.heares.2021.108406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Outer hair cells (OHC) are key to the mammalian cochlear amplifier, powered by the lateral membrane protein Prestin. In this study, we explored age-related OHC changes and how the changes affected hearing in mouse. OHC nonlinear membrane capacitance measurements revealed that, starting upon completion of postnatal auditory development, a continuous reduction of total Prestin in OHCs accompanied by a significant reduction in their cell surface area. Prestin's density is unaffected by Prestin level drop over the whole age range tested, suggesting that the OHC size reduction is Prestin-dependent. Stereocilia length in aged OHCs remained unchanged but the first row stereocilia on the aged inner hair cells (IHCs) were elongated. Distortion product otoacoustic emission (DPOAE) group delays became longer with aging, suggesting an apical shift in vibration on basilar membrane. Acoustic lesion experiments revealed an apical shift in damage place in old cochleae accompanied by a shallower progression in synaptic damage over a wider frequency range that was indicative of a broader frequency filter. Overall, these findings suggest that in aging cochlea, a shift in frequency place coding could occur due to the changes in cochlear active and passive mechanics. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
8
|
Glavin CC, Siegel J, Dhar S. Distortion Product Otoacoustic Emission (DPOAE) Growth in Aging Ears with Clinically Normal Behavioral Thresholds. J Assoc Res Otolaryngol 2021; 22:659-680. [PMID: 34591199 DOI: 10.1007/s10162-021-00805-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related hearing loss (ARHL) is a devastating public health issue. To successfully address ARHL using existing and future treatments, it is imperative to detect the earliest signs of age-related auditory decline and understand the mechanisms driving it. Here, we explore early signs of age-related auditory decline by characterizing cochlear function in 199 ears aged 10-65 years, all of which had clinically defined normal hearing (i.e., behavioral thresholds ≤ 25 dB HL from .25 to 8 kHz bilaterally) and no history of noise exposure. We characterized cochlear function by measuring behavioral thresholds in two paradigms (traditional audiometric thresholds from .25 to 8 kHz and Békésy tracking thresholds from .125 to 20 kHz) and distortion product otoacoustic emission (DPOAE) growth functions at f2 = 2, 4, and 8 kHz. Behavioral thresholds through a standard clinical frequency range (up to 8 kHz) showed statistically, but not clinically, significant declines across increasing decades of life. In contrast, DPOAE growth measured in the same frequency range showed clear declines as early 30 years of age, particularly across moderate stimulus levels (L2 = 25-45 dB SPL). These substantial declines in DPOAE growth were not fully explained by differences in behavioral thresholds measured in the same frequency region. Additionally, high-frequency Békésy tracking thresholds above ~11.2 kHz showed frank declines with increasing age. Collectively, these results suggest that early age-related cochlear decline (1) begins as early as the third or fourth decade of life, (2) is greatest in the cochlear base but apparent through the length of the cochlear partition, (3) cannot be detected fully by traditional clinical measures, and (4) is likely due to a complex mix of etiologies.
Collapse
Affiliation(s)
- Courtney Coburn Glavin
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Frances Searle Building 1-240, 2240 Campus Drive, Evanston, IL, 60208, USA.
| | - Jonathan Siegel
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Frances Searle Building 1-240, 2240 Campus Drive, Evanston, IL, 60208, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Frances Searle Building 1-240, 2240 Campus Drive, Evanston, IL, 60208, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
|
10
|
Heeringa AN, Köppl C. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy. Hear Res 2019; 376:111-124. [PMID: 30862414 DOI: 10.1016/j.heares.2019.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Strial dysfunction is commonly observed as a key consequence of aging in the cochlea. A large body of animal research, especially in the quiet-aged Mongolian gerbil, shows specific histopathological changes in the cochlear stria vascularis and the putatively corresponding effects on endocochlear potential and auditory nerve responses. However, recent work suggests that synaptopathy, or the loss of inner hair cell-auditory nerve fiber synapses, also presents as a consequence of aging. It is now believed that the loss of synapses is the earliest age-related degenerative event. The present review aims to integrate classic and novel research on age-related pathologies of the inner ear. First, we summarize current knowledge on age-related strial dysfunction and synaptopathy. We describe how these cochlear pathologies fit into the categories for presbyacusis, as first defined by Schuknecht in the '70s. Further, we discuss how strial dysfunction and synaptopathy affect sound coding by the auditory nerve and how they can be experimentally induced to study their specific contributions to age-related hearing deficits. As such, we aim to give an overview of the current literature on age-related cochlear pathologies and hope to inspire further research on the role of cochlear aging in age-related hearing deficits.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
11
|
Profant O, Jilek M, Bures Z, Vencovsky V, Kucharova D, Svobodova V, Korynta J, Syka J. Functional Age-Related Changes Within the Human Auditory System Studied by Audiometric Examination. Front Aging Neurosci 2019; 11:26. [PMID: 30863300 PMCID: PMC6399208 DOI: 10.3389/fnagi.2019.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/30/2019] [Indexed: 12/27/2022] Open
Abstract
Age related hearing loss (presbycusis) is one of the most common sensory deficits in the aging population. The main subjective ailment in the elderly is the deterioration of speech understanding, especially in a noisy environment, which cannot solely be explained by increased hearing thresholds. The examination methods used in presbycusis are primarily focused on the peripheral pathologies (e.g., hearing sensitivity measured by hearing thresholds), with only a limited capacity to detect the central lesion. In our study, auditory tests focused on central auditory abilities were used in addition to classical examination tests, with the aim to compare auditory abilities between an elderly group (elderly, mean age 70.4 years) and young controls (young, mean age 24.4 years) with clinically normal auditory thresholds, and to clarify the interactions between peripheral and central auditory impairments. Despite the fact that the elderly were selected to show natural age-related deterioration of hearing (auditory thresholds did not exceed 20 dB HL for main speech frequencies) and with clinically normal speech reception thresholds (SRTs), the detailed examination of their auditory functions revealed deteriorated processing of temporal parameters [gap detection threshold (GDT), interaural time difference (ITD) detection] which was partially responsible for the altered perception of distorted speech (speech in babble noise, gated speech). An analysis of interactions between peripheral and central auditory abilities, showed a stronger influence of peripheral function than temporal processing ability on speech perception in silence in the elderly with normal cognitive function. However, in a more natural environment mimicked by the addition of background noise, the role of temporal processing increased rapidly.
Collapse
Affiliation(s)
- Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology of Faculty Hospital Královské Vinohrady and 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Milan Jilek
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Technical Studies, College of Polytechnics, Jihlava, Czechia
| | - Vaclav Vencovsky
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Diana Kucharova
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Veronika Svobodova
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | | | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Vaden KI, Matthews LJ, Dubno JR. Transient-Evoked Otoacoustic Emissions Reflect Audiometric Patterns of Age-Related Hearing Loss. Trends Hear 2019; 22:2331216518797848. [PMID: 30198420 PMCID: PMC6131303 DOI: 10.1177/2331216518797848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct forms of age-related hearing loss are hypothesized based on evidence
from animal models of aging, which are identifiable in human audiograms. The
Sensory phenotype results from damage (e.g., excessive noise or ototoxic drugs)
to outer hair cells and sometimes inner hair cells, producing large threshold
increases predominately at high frequencies. The Metabolic phenotype results
from a decline in endocochlear potential that can reduce outer hair cell
motility throughout the cochlea, producing gradually sloping thresholds from
lower to higher frequencies. Finally, the combined Metabolic + Sensory phenotype
results in low-frequency losses similar to the Metabolic phenotype and
high-frequency losses similar to the Sensory phenotype. Because outer hair cell
function appears to be affected differently in each phenotype, this study used
audiograms from 618 adults aged 50 to 93 years (n = 1,208 ears)
to classify phenotypes and characterize differences in transient-evoked
otoacoustic emission (TEOAE) data. Significant phenotype differences were
observed in frequency-band TEOAEs and configuration (intercept and slope),
including large and broadly distributed TEOAE reductions for Metabolic and
Metabolic + Sensory ears and more focused high-frequency TEOAE reductions for
Sensory ears. These findings are consistent with metabolic declines that reduce
cochlear amplification across a broad range of frequencies and more basally
situated, high-frequency declines in sensory hearing loss. The results provide
further validation for the classification of age-related hearing loss phenotypes
based on audiograms and show human TEOAE declines that are highly consistent
with animal models.
Collapse
Affiliation(s)
- Kenneth I Vaden
- 1 Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Lois J Matthews
- 1 Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Judy R Dubno
- 1 Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Nowotny M, Kiefer L, Andre D, Fabrizius A, Hankeln T, Reuss S. Hearing Without Neuroglobin. Neuroscience 2017; 366:138-148. [DOI: 10.1016/j.neuroscience.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
|