1
|
Sun T, Li W, Shi K, Zhao Y, Guo D, Wang D. The Role of Connexin26 and Connexin30 in the Mouse Cochlea of Noise-Induced Hearing Loss. Otolaryngol Head Neck Surg 2024. [PMID: 39369436 DOI: 10.1002/ohn.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE We aimed to explore the role of connexin26 (Cx26) and connexin30 (Cx30) in the cochlea in noise-induced permanent threshold shifts (PTS) and temporary threshold shift (TTS). STUDY DESIGN Prospective, controlled. SETTING Laboratory. METHODS A mouse model of noise-induced PTS and TTS was constructed. Western blots were used to detect the expression of Cx26 and Cx30 in the cochlea. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to assess the potential biological pathways. RESULTS Both the expression of Cx26 and Cx30 showed a trend of first rising and then falling in noise-induced PTS. The expression of Cx26 increased greatly in the 24 hours noise exposure (P < .05) and reached the highest level in the 4 hours after noise exposure (P < .05), then decreased gradually and returned to the control level on the seventh day after the noise exposure, when compared with the control group. The expression of Cx30 showed a similar trend in noise-induced PTS. However, both the expression of Cx26 and Cx30 showed a trend of first falling and then rising in noise induced TTS. The expression of Cx26/Cx30 reached its lowest level in the 4 hours after noise exposure (P < .05), and then increased to the control level on the second day after noise exposure (P > .05), compared with the control group. The first KEGG and GO pathway may be related with oxidative phosphorylation. CONCLUSION Cx26 and Cx30 may have an effect in noise induced PTS and TTS. Future studies are needed to confirm the results.
Collapse
Affiliation(s)
- Tao Sun
- Department of Clinical Medicine, Henan Medical College, Zhengzhou, Henan, China
- Henan Provincial Health and Wellness Commission Key Laboratory of Hearing Loss Mechanism Research, Zhengzhou, Henan, China
| | - Wenzhen Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Ke Shi
- Henan Provincial Health and Wellness Commission Key Laboratory of Hearing Loss Mechanism Research, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China
| | - Yue Zhao
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Guo
- Department of Clinical Medicine, Henan Medical College, Zhengzhou, Henan, China
- Henan Provincial Health and Wellness Commission Key Laboratory of Hearing Loss Mechanism Research, Zhengzhou, Henan, China
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
3
|
Svobodová V, Profant O, Syka J, Tóthová D, Bureš Z. The Influence of Asymmetric Hearing Loss on Peripheral and Central Auditory Processing Abilities in Patients With Vestibular Schwannoma. Ear Hear 2024:00003446-990000000-00311. [PMID: 39004787 DOI: 10.1097/aud.0000000000001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
OBJECTIVES Asymmetric or unilateral hearing loss (AHL) may cause irreversible changes in the processing of acoustic signals in the auditory system. We aim to provide a comprehensive view of the auditory processing abilities for subjects with acquired AHL, and to examine the influence of AHL on speech perception under difficult conditions, and on auditory temporal and intensity processing. DESIGN We examined peripheral and central auditory functions for 25 subjects with AHL resulting from vestibular schwannoma, and compared them to those from 24 normal-hearing controls that were matched with the AHL subjects in mean age and hearing thresholds in the healthy ear. Besides the basic hearing threshold assessment, the tests comprised the detection of tones and gaps in a continuous noise, comprehension of speech in babble noise, binaural interactions, difference limen of intensity, and detection of frequency modulation. For the AHL subjects, the selected tests were performed separately for the healthy and diseased ear. RESULTS We observed that binaural speech comprehension, gap detection, and frequency modulation detection abilities were dominated by the healthy ear and were comparable for both groups. The AHL subjects were less sensitive to interaural delays, however, they exhibited a higher sensitivity to sound level, as indicated by lower difference limen of intensity and a higher sensitivity to interaural intensity difference. Correlations between the individual test scores indicated that speech comprehension by the AHL subjects was associated with different auditory processing mechanisms than for the control subjects. CONCLUSIONS The data suggest that AHL influences both peripheral and central auditory processing abilities and that speech comprehension under difficult conditions relies on different mechanisms for the AHL subjects than for normal-hearing controls.
Collapse
Affiliation(s)
- Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague 5, Czech Republic
| | - Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague 10, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague 6, Czech Republic
| | - Diana Tóthová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague 4, Czech Republic
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague 5, Czech Republic
| | - Zbyněk Bureš
- Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague 10, Czech Republic
- Department of Technical Studies, College of Polytechnics Jihlava, Jihlava, Czech Republic
| |
Collapse
|
4
|
Bakay WMH, Cervantes B, Lao-Rodríguez AB, Johannesen PT, Lopez-Poveda EA, Furness DN, Malmierca MS. How 'hidden hearing loss' noise exposure affects neural coding in the inferior colliculus of rats. Hear Res 2024; 443:108963. [PMID: 38308936 DOI: 10.1016/j.heares.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Exposure to brief, intense sound can produce profound changes in the auditory system, from the internal structure of inner hair cells to reduced synaptic connections between the auditory nerves and the inner hair cells. Moreover, noisy environments can also lead to alterations in the auditory nerve or to processing changes in the auditory midbrain, all without affecting hearing thresholds. This so-called hidden hearing loss (HHL) has been shown in tinnitus patients and has been posited to account for hearing difficulties in noisy environments. However, much of the neuronal research thus far has investigated how HHL affects the response characteristics of individual fibres in the auditory nerve, as opposed to higher stations in the auditory pathway. Human models show that the auditory nerve encodes sound stochastically. Therefore, a sufficient reduction in nerve fibres could result in lowering the sampling of the acoustic scene below the minimum rate necessary to fully encode the scene, thus reducing the efficacy of sound encoding. Here, we examine how HHL affects the responses to frequency and intensity of neurons in the inferior colliculus of rats, and the duration and firing rate of those responses. Finally, we examined how shorter stimuli are encoded less effectively by the auditory midbrain than longer stimuli, and how this could lead to a clinical test for HHL.
Collapse
Affiliation(s)
- Warren M H Bakay
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Blanca Cervantes
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; School of Medicine, University Anáhuac Puebla, Mexico
| | - Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Surgery, Faculty of Medicine, University of Salamanca, Spain
| | - David N Furness
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
5
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
6
|
Bures Z, Pysanenko K, Syka J. The influence of developmental noise exposure on the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021; 409:108306. [PMID: 34311267 DOI: 10.1016/j.heares.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Previous experiments have acknowledged that inappropriate or missing auditory inputs during the critical period of development cause permanent changes of the structure and function of the auditory system (Bures et al., 2017). We explore in this study how developmental noise exposure influences the coding of temporally structured stimuli in the neurons of the primary auditory cortex (AC) in Long Evans rats. The animals were exposed on postnatal day 14 (P14) for 12 minutes to a loud (125 dB SPL) broad-band noise. The responses to an amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains, were recorded from the right AC of rats of two age groups: young-adult (ca. 6 months old) and adult (ca. 2 years old), both in the exposed animals and in control unexposed rats. The neonatal exposure resulted in a higher synchronization ability (phase-locking) of the AC neurons for all three stimuli; furthermore, the similarity of neuronal response patterns to repetitive stimulation was higher in the exposed rats. On the other hand, the exposed animals showed a steeper decline of modulation-transfer functions towards higher modulation frequencies/repetition rates. Differences between the two age groups were also apparent; in general, aging had qualitatively the same effect as the developmental exposure. The current results demonstrate that brief noise exposure during the maturation of the auditory system influences both the temporal and the rate coding of periodically modulated sounds in the AC of rats; the changes are permanent and observable up to late adulthood.
Collapse
Affiliation(s)
- Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
7
|
Brumm H, Goymann W, Derégnaucourt S, Geberzahn N, Zollinger SA. Traffic noise disrupts vocal development and suppresses immune function. SCIENCE ADVANCES 2021; 7:7/20/eabe2405. [PMID: 33980481 PMCID: PMC8115921 DOI: 10.1126/sciadv.abe2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/23/2021] [Indexed: 05/26/2023]
Abstract
Noise pollution has been linked to learning and language deficits in children, but the causal mechanisms connecting noise to cognitive deficiencies remain unclear because experimental models are lacking. Here, we investigated the effects of noise on birdsong learning, the primary animal model for vocal learning and speech development in humans. We found that traffic noise exposure retarded vocal development and led to learning inaccuracies. In addition, noise suppressed immune function during the sensitive learning period, indicating that it is a potent stressor for birds, which is likely to compromise their cognitive functions. Our results provide important insights into the consequences of noise pollution and pave the way for future studies using birdsong as an experimental model for the investigation of noise-induced learning impairments.
Collapse
Affiliation(s)
- Henrik Brumm
- Max Planck Institute for Ornithology, Communication and Social Behaviour Group, Seewiesen, Germany.
| | - Wolfgang Goymann
- Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Seewiesen, Germany
| | | | - Nicole Geberzahn
- University Paris Nanterre, Laboratoire Ethologie Cognition Développement, Nanterre, France
| | - Sue Anne Zollinger
- Max Planck Institute for Ornithology, Communication and Social Behaviour Group, Seewiesen, Germany
| |
Collapse
|
8
|
Lara RA, Vasconcelos RO. Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish. Sci Rep 2021; 11:6615. [PMID: 33758247 PMCID: PMC7988139 DOI: 10.1038/s41598-021-85296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Noise pollution is increasingly present in aquatic ecosystems, causing detrimental effects on growth, physiology and behaviour of organisms. However, limited information exists on how this stressor affects animals in early ontogeny, a critical period for development and establishment of phenotypic traits. We tested the effects of chronic noise exposure to increasing levels (130 and 150 dB re 1 μPa, continuous white noise) and different temporal regimes on larval zebrafish (Danio rerio), an important vertebrate model in ecotoxicology. The acoustic treatments did not affect general development or hatching but higher noise levels led to increased mortality. The cardiac rate, yolk sac consumption and cortisol levels increased significantly with increasing noise level at both 3 and 5 dpf (days post fertilization). Variation in noise temporal patterns (different random noise periods to simulate shipping activity) suggested that the time regime is more important than the total duration of noise exposure to down-regulate physiological stress. Moreover, 5 dpf larvae exposed to 150 dB continuous noise displayed increased dark avoidance in anxiety-related dark/light preference test and impaired spontaneous alternation behaviour. We provide first evidence of noise-induced physiological stress and behavioural disturbance in larval zebrafish, showing that both noise amplitude and timing negatively impact key developmental endpoints in early ontogeny.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
- Departamento de Biología, Universidad de Sevilla, Seville, Spain.
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
| |
Collapse
|
9
|
Abstract
The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.
Collapse
|
10
|
Svobodová Burianová J, Syka J. Postnatal exposure to an acoustically enriched environment alters the morphology of neurons in the adult rat auditory system. Brain Struct Funct 2020; 225:1979-1995. [PMID: 32588120 DOI: 10.1007/s00429-020-02104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
The structure of neurons in the central auditory system is vulnerable to various kinds of acoustic exposures during the critical postnatal developmental period. Here we explored long-term effects of exposure to an acoustically enriched environment (AEE) during the third and fourth weeks of the postnatal period in rat pups. AEE consisted of a spectrally and temporally modulated sound of moderate intensity, reinforced by a behavioral paradigm. At the age of 3-6 months, a Golgi-Cox staining was used to evaluate the morphology of neurons in the inferior colliculus (IC), the medial geniculate body (MGB), and the auditory cortex (AC). Compared to controls, rats exposed to AEE showed an increased mean dendritic length and volume and the soma surface in the external cortex and the central nucleus of the IC. The spine density increased in both the ventral and dorsal divisions of the MGB. In the AC, the total length and volume of the basal dendritic segments of pyramidal neurons and the number and density of spines on these dendrites increased significantly. No differences were found on apical dendrites. We also found an elevated number of spines and spine density in non-pyramidal neurons. These results show that exposure to AEE during the critical developmental period can induce permanent changes in the structure of neurons in the central auditory system. These changes represent morphological correlates of the functional plasticity, such as an improvement in frequency tuning and synchronization with temporal parameters of acoustical stimuli.
Collapse
Affiliation(s)
- Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Effect of noise on development of call discrimination by nestling tree swallows, Tachycineta bicolor. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Fetal Middle Cerebral Artery Pulsatility Index in No-Risk Pregnancies: Effects of Auditory Stimulation and Pregnancy Order. Int J Mol Sci 2020; 21:ijms21113855. [PMID: 32485789 PMCID: PMC7312760 DOI: 10.3390/ijms21113855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Pulsatility index (PI) values in a fetal middle cerebral artery (MCA) were compared in no-risk pregnancies to examine the differences related to auditory stimulation test and pregnancy order. The study included 196 women with no-risk pregnancies selected from the database of more than 1000 pregnant women divided into two groups. Group 1 consisted of 98 nulliparous women (C1 = 98) and Group 2 consisted of 98 parous women (C2 = 98). All pregnant women were of comparable age and fetal gestational age (GA) when MCA-PI values were recorded. Measurements of PI values in fetal MCA were obtained before and immediately after the application of fetal auditory stimulation test. The MCA-PI measuring was conducted in the period between the 36th and the 41st week of GA. The results showed that PI baseline values and PI values after defined auditory stimulation were significantly different when measured in nulliparous women compared to parous women (p = 0.001; p = 0.003, respectively), while no group differences were observed in relative PI value changes due to auditory stimulation. These findings suggest that hemodynamic changes in fetal MCA caused by defined auditory stimulation measured by PI value changes may be valuable in the assessment of fetal auditory perception functionality and its development.
Collapse
|
13
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
14
|
Monson BB, Rock J, Cull M, Soloveychik V. Neonatal intensive care unit incubators reduce language and noise levels more than the womb. J Perinatol 2020; 40:600-606. [PMID: 32020037 DOI: 10.1038/s41372-020-0592-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/17/2019] [Accepted: 01/12/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess the sound reducing characteristics of modern incubators in the neonatal intensive care unit (NICU) and to better characterize auditory and language exposures for NICU infants. STUDY DESIGN Sound frequency spectral analysis was conducted on language and noise audio acquired simultaneously inside and outside incubators located in the NICU. RESULTS Sound transmission into the incubators was nonuniform. Very low-frequency sounds (<100 Hz) were unattenuated or even slightly amplified inside the incubators. Maximal reduction was observed for low-to-mid frequencies (300-600 Hz) and high frequencies (>2000 Hz), which convey important language information. CONCLUSIONS Sound reductions observed across NICU incubator walls are more severe than those reported for sound transmission into the intrauterine environment, particularly for midrange frequencies that are important for language. Although incubator walls may serve as a protection against noxious noise levels, these findings reveal a potentially detrimental effect on language exposure for infants inside a NICU incubator.
Collapse
Affiliation(s)
- Brian B Monson
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Jenna Rock
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Molly Cull
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | | |
Collapse
|
15
|
Rybalko N, Mitrovic D, Šuta D, Bureš Z, Popelář J, Syka J. Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol Behav 2019; 210:112620. [DOI: 10.1016/j.physbeh.2019.112620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
16
|
Reinhard SM, Abundez-Toledo M, Espinoza K, Razak KA. Effects of developmental noise exposure on inhibitory cell densities and perineuronal nets in A1 and AAF of mice. Hear Res 2019; 381:107781. [DOI: 10.1016/j.heares.2019.107781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
17
|
Xia C, Yin M, Pan P, Fang F, Zhou Y, Ji Y. Long-term exposure to moderate noise induces neural plasticity in the infant rat primary auditory cortex. Anim Cells Syst (Seoul) 2019; 23:260-269. [PMID: 31489247 PMCID: PMC6711034 DOI: 10.1080/19768354.2019.1643782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported that rearing infant rat pups in continuous moderate-level noise delayed the formation of topographic representational order and the refinement of response selectivity in the primary auditory (A1) cortex. The present study further verified that exposure to long-term moderate-intensity white noise (70 dB sound pressure level) from postnatal day (P) 12 to P30 elevated the hearing thresholds of infant rats. Compared with age-matched control rats, noise exposure (NE) rats had elevated hearing thresholds ranging from low to high frequencies, accompanied by decreased amplitudes and increased latencies of the two initial auditory brainstem response waves. The power of raw local field potential oscillations and high-frequency β oscillation in the A1 cortex of NE rats were larger, whereas the power of high-frequency γ oscillation was smaller than that of control rats. In addition, the expression levels of five glutamate receptor (GluR) subunits in the A1 cortex of NE rats were decreased with laminar specificity. These results suggest that the altered neural excitability and decreased GluR expression may underlie the delay of functional maturation in the A1 cortex, and may have implications for the treatment of hearing impairment induced by environmental noise.
Collapse
Affiliation(s)
- Chenchen Xia
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Manli Yin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - Fanghao Fang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| | - You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, People's Republic of China
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Yu F, Xu X, Ren Z, Yang J, Kong F. Maternal high-decibel acoustic exposure elevates prenatal stress, impairing postnatal hearing thresholds associated with decreasing ribbon synapses in young rats. Reprod Toxicol 2019; 89:21-27. [PMID: 31238098 DOI: 10.1016/j.reprotox.2019.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Maternal stress may affect the fetal auditory system than direct sound exposure. The objective of this study was to evaluate the role of prenatal stress due to high-decibel (dB) sound exposure on postnatal hearing and cochlear structure. Pregnant rats were exposed to 95 or 65 dB noise or music for 2 h once a day from gestational day 15 until delivery. The serum corticosterone was measured in the pregnant dams and pups. On postnatal day 22, pups underwent auditory brainstem response (ABR) testing. Then, the cochleae were immediately harvested for biochemical and molecular investigations. Prenatal stress impaired reproductive parameters, increased serum corticosterone and ABR thresholds with the decrease in wave I peak amplitude and the number of pre-synaptic ribbon. Thus, prenatal stress induces postnatal hearing loss in young rats, which are related to the reduction of ribbon synapses.
Collapse
Affiliation(s)
- Fei Yu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China.
| | - Xueying Xu
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Zhongjuan Ren
- School of Public Health, He University, No.66 Sishui Street, Hunnan New District, Shenyang, 110163, China
| | - Jun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, China
| | - Fanxue Kong
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, China.
| |
Collapse
|
19
|
Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat. Neural Plast 2018; 2018:5903720. [PMID: 30002673 PMCID: PMC5998158 DOI: 10.1155/2018/5903720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.
Collapse
|
20
|
Abstract
Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example.
Collapse
|
21
|
Pysanenko K, Bureš Z, Lindovský J, Syka J. The Effect of Complex Acoustic Environment during Early Development on the Responses of Auditory Cortex Neurons in Rats. Neuroscience 2018; 371:221-228. [DOI: 10.1016/j.neuroscience.2017.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/12/2023]
|
22
|
Positive impacts of early auditory training on cortical processing at an older age. Proc Natl Acad Sci U S A 2017; 114:6364-6369. [PMID: 28559351 DOI: 10.1073/pnas.1707086114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive negative behavioral changes in normal aging are paralleled by a complex series of physical and functional declines expressed in the cerebral cortex. In studies conducted in the auditory domain, these degrading physical and functional cortical changes have been shown to be broadly reversed by intensive progressive training that improves the spectral and temporal resolution of acoustic inputs and suppresses behavioral distractors. Here we found older rats that were intensively trained on an attentionally demanding modulation-rate recognition task in young adulthood substantially retained training-driven improvements in temporal rate discrimination abilities over a subsequent 18-mo epoch-that is, forward into their older age. In parallel, this young-adult auditory training enduringly enhanced temporal and spectral information processing in their primary auditory cortices (A1). Substantially greater numbers of parvalbumin- and somatostatin-labeled inhibitory neurons (closer to the numbers recorded in young vigorous adults) were recorded in the A1 and hippocampus in old trained versus untrained age-matched rats. These results show that a simple form of training in young adulthood in this rat model enduringly delays the otherwise expected deterioration of the physical status and functional operations of the auditory nervous system, with evident training impacts generalized to the hippocampus.
Collapse
|