1
|
Hao S, Song W, Kong F, Yue X, Meng X, Chen H, Han Y, Yu F. Iron deficiency at birth and risk of hidden hearing loss in infants modification by socioeconomic status: mother-newborn cohort in Shenyang, China. BMC Public Health 2024; 24:953. [PMID: 38570765 PMCID: PMC10988964 DOI: 10.1186/s12889-024-18439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
OBJECTIVE The diagnosis of hidden hearing loss (HHL) in calm state has not yet been determined, while the nutritional status is not involved in its pathogenic risk factors. In utero iron deficiency (ID) may delay auditory neural maturation in infants. We evaluated the association between ID and HHL as well as the modification effect of socioeconomic status (SES) on this association in newborns. STUDY DESIGN We included 859 mother-newborns from the baseline of this observational northeast cohort. Data on exposure assessment included iron status [maternal hemoglobin (Hb) and neonatal heel prick serum ferritin (SF)] and SES (occupation, education and income). Auditory neural maturation was reflected by auditory brainstem response (ABR) testing and electrocochleography (ECochG). RESULTS Iron status and SES were independently and jointly associated with the prediction of neonatal HHL by logistic and linear regression model. The mediation effects were performed by Process. ID increased absolute latency wave V, interpeak latency (IPL) III-V, and summting potentials (SP) /action potentials (AP), which were combined as HHL. Low SES showed the highest risk of HHL and the highest levels of related parameters in ID newborns. Moreover, after Corona Virus Disease 2019 (COVID-19) were positive, preschool children who experience ID in neonatal period were more likely to suffer from otitis media with effusion (OME). High SES also showed similar risk effects. CONCLUSION Both low and high SES may strengthen the risk of ID on neonatal HHL in Northeast China.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Otolaryngology, First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, China.
| | - Wei Song
- School of Public Health, He University, Hunnan New District, No.66 Sishui Street, Shenyang, 110163, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang North New District, No.77 Puhe Road, Shenyang, 110122, China
| | - Fanxue Kong
- Center of Physical Examination, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Xigang District, Dalian, 116011, China
| | - Xinxin Yue
- School of Clinical Medicine, He University, Hunnan New District, No.66 Sishui Street, Shenyang, 110163, China
| | - Xinlei Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No.9 West Section of Lvshun South Road, Dalian, 116044, Lvshunkou District, China
| | - Hongyan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No.9 West Section of Lvshun South Road, Dalian, 116044, Lvshunkou District, China
| | - Yunyan Han
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No.9 West Section of Lvshun South Road, Dalian, 116044, Lvshunkou District, China
| | - Fei Yu
- School of Public Health, He University, Hunnan New District, No.66 Sishui Street, Shenyang, 110163, China.
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang North New District, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
2
|
Großmann W. Listening with an Ageing Brain - a Cognitive Challenge. Laryngorhinootologie 2023; 102:S12-S34. [PMID: 37130528 PMCID: PMC10184676 DOI: 10.1055/a-1973-3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hearing impairment has been recently identified as a major modifiable risk factor for cognitive decline in later life and has been becoming of increasing scientific interest. Sensory and cognitive decline are connected by complex bottom-up and top-down processes, a sharp distinction between sensation, perception, and cognition is impossible. This review provides a comprehensive overview on the effects of healthy and pathological aging on auditory as well as cognitive functioning on speech perception and comprehension, as well as specific auditory deficits in the 2 most common neurodegenerative diseases in old age: Alzheimer disease and Parkinson syndrome. Hypotheses linking hearing loss to cognitive decline are discussed, and current knowledge on the effect of hearing rehabilitation on cognitive functioning is presented. This article provides an overview of the complex relationship between hearing and cognition in old age.
Collapse
Affiliation(s)
- Wilma Großmann
- Universitätsmedizin Rostock, Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde,Kopf- und Halschirurgie "Otto Körner"
| |
Collapse
|
3
|
Development of an audiological assessment and diagnostic model for high occupational noise exposure. Eur Arch Otorhinolaryngol 2022; 280:2763-2772. [PMID: 36525077 DOI: 10.1007/s00405-022-07787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To explore the diagnostic auditory indicators of high noise exposure and combine them into a diagnostic model of high noise exposure and possible development of hidden hearing loss (HHL). METHODS We recruited 101 young adult subjects and divided them according to noise exposure history into high-risk and low-risk groups. All subjects completed demographic characteristic collection (including age, noise exposure, self-reported hearing status, and headset use) and related hearing examination. RESULTS The 8 kHz (P = 0.039) and 10 kHz (P = 0.005) distortion product otoacoustic emission amplitudes (DPOAE) (DPs) in the high-risk group were lower than those in the low-risk group. The amplitudes of the summating potential (SP) (P = 0.017) and action potential (AP) (P = 0.012) of the electrocochleography (ECochG) in the high-risk group were smaller than those in the low-risk group. The auditory brainstem response (ABR) wave III amplitude in the high-risk group was higher than that in the low-risk group. When SNR = - 7.5 dB (P = 0.030) and - 5 dB (P = 0.000), the high-risk group had a lower speech discrimination score than that of the low-risk group. The 10 kHz DPOAE DP, ABR wave III amplitude and speech discrimination score under noise with SNR = - 5 dB were combined to construct a combination diagnostic indicator. The area under the ROC curve was 0.804 (95% CI 0.713-0.876), the sensitivity was 80.39%, and the specificity was 68.00%. CONCLUSIONS We expect that high noise exposure can be detected early with this combined diagnostic indicator to prevent HHL or sensorineural hearing loss (SNHL). TRIAL REGISTRATION NUMBER/DATE OF REGISTRATION ChiCTR2200057989, 2022/3/25.
Collapse
|
4
|
Liu YH, Jiang YH, Li CC, Chen XM, Huang LG, Zhang M, Ruan B, Wang XC. Involvement of the SIRT1/PGC-1α Signaling Pathway in Noise-Induced Hidden Hearing Loss. Front Physiol 2022; 13:798395. [PMID: 35620603 PMCID: PMC9127058 DOI: 10.3389/fphys.2022.798395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/18/2022] [Indexed: 12/06/2022] Open
Abstract
Objective: To establish an animal model of noise-induced hidden hearing loss (NIHHL), evaluate the dynamic changes in cochlear ribbon synapses and cochlear hair cell morphology, and observe the involvement of the SIRT1/PGC-1α signaling pathway in NIHHL.Methods: Male guinea pigs were randomly divided into three groups: control group, noise exposure group, and resveratrol treatment group. Each group was divided into five subgroups: the control group and 1 day, 1 week, 2 weeks, and 1 month post noise exposure groups. The experimental groups received noise stimulation at 105 dB SPL for 2 h. Hearing levels were examined by auditory brainstem response (ABR). Ribbon synapses were evaluated by inner ear basilar membrane preparation and immunofluorescence. The cochlear morphology was observed using scanning electron microscopy. Western blotting analysis and immunofluorescence was performed to assess the change of SIRT1/PGC-1α signaling. Levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), ATP and SIRT1 activity were measured using commercial testing kits.Results: In the noise exposure group, hearing threshold exhibited a temporary threshold shift (TTS), and amplitude of ABR wave I decreased irreversibly. Ribbon synapse density decreased after noise exposure, and the stereocilia were chaotic and then returned to normal. The expression and activity of SIRT1 and PGC-1α protein was lower than that in the control group. SOD, CAT and ATP were also influenced by noise exposure and were lower than those in the control group, but MDA showed no statistical differences compared with the control group. After resveratrol treatment, SIRT1 expression and activity showed a significant increase after noise exposure, compared with the noise exposure group. In parallel, the PGC-1α and antioxidant proteins were also significantly altered after noise exposure, compared with the noise exposure group. The damage to the ribbon synapses and the stereocilia were attenuated by resveratrol as well. More importantly, the auditory function, especially ABR wave I amplitudes, was also promoted in the resveratrol treatment group.Conclusion: The SIRT1/PGC-1α signaling pathway and oxidative stress are involved in the pathogenesis of NIHHL and could be potential therapeutical targets in the future.
Collapse
Affiliation(s)
- Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yi-Hong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Cong-Cong Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xue-Min Chen
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head and Neck Surgery, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Li-Gui Huang
- The 908th Hospital of Joint Logistics Support Force of PLA, Nanchang, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Bai Ruan
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an, China
- Department of Avation Medicine, Xi-Jing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Xiao-Cheng Wang, ; Bai Ruan, ; Min Zhang,
| |
Collapse
|
5
|
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss. Neural Plast 2020; 2020:8815990. [PMID: 33204247 PMCID: PMC7652619 DOI: 10.1155/2020/8815990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
In the auditory system, ribbon synapses are vesicle-associated structures located between inner hair cells (IHCs) and spiral ganglion neurons that are implicated in the modulation of trafficking and fusion of synaptic vesicles at the presynaptic terminals. Synapse loss may result in hearing loss and difficulties with understanding speech in a noisy environment. This phenomenon happens without permanent hearing loss; that is, the cochlear synaptopathy is "hidden." Recent studies have reported that synapse loss might be critical in the pathogenesis of hidden hearing loss. A better understanding of the molecular mechanisms of the formation, structure, regeneration, and protection of ribbon synapses will assist in the design of potential therapeutic strategies. In this review, we describe and summarize the following aspects of ribbon synapses: (1) functional and structural features, (2) potential mechanisms of damage, (3) therapeutic research on protecting the synapses, and (4) the role of synaptic regeneration in auditory neuropathy and the current options for synapse rehabilitation.
Collapse
|
6
|
The integrity of cochlear hair cells is established and maintained through the localization of Dia1 at apical junctional complexes and stereocilia. Cell Death Dis 2020; 11:536. [PMID: 32678080 PMCID: PMC7366933 DOI: 10.1038/s41419-020-02743-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Dia1, which belongs to the diaphanous-related formin family, influences a variety of cellular processes through straight actin elongation activity. Recently, novel DIA1 mutants such as p.R1213X (p.R1204X) and p.A265S, have been reported to cause an autosomal dominant sensorineural hearing loss (DFNA1). Additionally, active DIA1 mutants induce progressive hearing loss in a gain-of-function manner. However, the subcellular localization and pathological function of DIA1(R1213X/R1204X) remains unknown. In the present study, we demonstrated the localization of endogenous Dia1 and the constitutively active DIA1 mutant in the cochlea, using transgenic mice expressing FLAG-tagged DIA1(R1204X) (DIA1-TG). Endogenous Dia1 and the DIA1 mutant were regionally expressed at the organ of Corti and the spiral ganglion from early life; alongside cochlear maturation, they became localized at the apical junctional complexes (AJCs) between hair cells (HCs) and supporting cells (SCs). To investigate HC vulnerability in the DIA1-TG mice, we exposed 4-week-old mice to moderate noise, which induced temporary threshold shifts with cochlear synaptopathy and ultrastructural changes in stereocilia 4 weeks post noise exposure. Furthermore, we established a knock-in (KI) mouse line expressing AcGFP-tagged DIA1(R1213X) (DIA1-KI) and confirmed mutant localization at AJCs and the tips of stereocilia in HCs. In MDCKAcGFP-DIA1(R1213X) cells with stable expression of AcGFP-DIA1(R1213X), AcGFP-DIA1(R1213X) revealed marked localization at microvilli on the apical surface of cells and decreased localization at cell-cell junctions. The DIA1-TG mice demonstrated hazy and ruffled circumferential actin belts at AJCs and abnormal stereocilia accompanied with HC loss at 5 months of age. In conclusion, Dia1 plays a pivotal role in the development and maintenance of AJCs and stereocilia, ensuring cochlear and HC integrity. Subclinical/latent vulnerability of HCs may be the cause of progressive hearing loss in DFNA1 patients, thus suggesting new therapeutic targets for preventing HC degeneration and progressive hearing loss associated with DFNA1.
Collapse
|
7
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
8
|
Fernandez KA, Guo D, Micucci S, De Gruttola V, Liberman MC, Kujawa SG. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2019; 427:43-57. [PMID: 31887361 DOI: 10.1016/j.neuroscience.2019.11.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/28/2022]
Abstract
Prior work has provided extensive documentation of threshold sensitivity and sensory hair cell losses after noise exposure. It is now clear, however, that cochlear synaptic loss precedes such losses, at least at low-moderate noise doses, silencing affected neurons. To address questions of whether, and how, cochlear synaptopathy and underlying mechanisms change as noise dose is varied, we assessed cochlear physiologic and histologic consequences of a range of exposures varied in duration from 15 min to 8 h and in level from 85 to 112 dB SPL. Exposures delivered to adult CBA/CaJ mice produced acute elevations in hair cell- and neural-based response thresholds ranging from trivial (∼5 dB) to large (∼50 dB), followed by varying degrees of recovery. Males appeared more noise vulnerable for some conditions of exposure. There was little to no inner hair cell (IHC) loss, but outer hair cell (OHC) loss could be substantial at highest frequencies for highest noise doses. Synapse loss was an early manifestation of noise injury and did not scale directly with either temporary or permanent threshold shift. With increasing noise dose, synapse loss grew to ∼50%, then declined for exposures yielding permanent hair cell injury/loss. All synaptopathic, but no non-synaptopathic exposures produced persistent neural response amplitude declines; those additionally yielding permanent OHC injury/loss also produced persistent reductions in OHC-based responses and exaggerated neural amplitude declines. Findings show that widespread cochlear synaptopathy can be present with and without noise-induced sensory cell loss and that differing patterns of cellular injury influence synaptopathic outcomes.
Collapse
Affiliation(s)
- Katharine A Fernandez
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Guo
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Micucci
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA
| | - Victor De Gruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon G Kujawa
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear, Boston, MA 02114, USA; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Bullen A, Anderson L, Bakay W, Forge A. Localized disorganization of the cochlear inner hair cell synaptic region after noise exposure. Biol Open 2019; 8:bio.038547. [PMID: 30504133 PMCID: PMC6361218 DOI: 10.1242/bio.038547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence and importance of hearing damage caused by noise levels not previously thought to cause permanent hearing impairment has become apparent in recent years. The damage to, and loss of, afferent terminals of auditory nerve fibres at the cochlear inner hair cell has been well established, but the effects of noise exposure and terminal loss on the inner hair cell are less known. Using three-dimensional structural studies in mice we have examined the consequences of afferent terminal damage on inner hair cell morphology and intracellular structure. We identified a structural phenotype in the pre-synaptic regions of these damaged hair cells that persists for four weeks after noise exposure, and demonstrates a specific dysregulation of the synaptic vesicle recycling pathway. We show evidence of a failure in regeneration of vesicles from small membrane cisterns in damaged terminals, resulting from a failure of separation of small vesicle buds from the larger cisternal membranes.
Collapse
|
10
|
Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol 2018; 58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen G. Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
11
|
Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms. Hear Res 2018; 371:66-74. [PMID: 30504092 DOI: 10.1016/j.heares.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
A current initiative in auditory neuroscience research is to better understand why some listeners struggle to perceive speech-in-noise (SIN) despite having normal hearing sensitivity. Various hypotheses regarding the physiologic bases of this disorder have been proposed. Notably, recent work has suggested that the site of lesion underlying SIN deficits in normal hearing listeners may be either in "sub-clinical" outer hair cell damage or synaptopathic degeneration at the inner hair cell-auditory nerve fiber synapse. In this study, we present a retrospective investigation of these peripheral sources and their relationship with SIN performance variability in one of the largest datasets of young normal-hearing listeners presented to date. 194 participants completed detailed case history questionnaires assessing noise exposure, SIN complaints, tinnitus, and hyperacusis. Standard and extended high frequency audiograms, distortion product otoacoustic emissions, click-evoked auditory brainstem responses, and SIN performance measures were also collected. We found that: 1) the prevalence of SIN deficits in normal hearing listeners was 42% when based on subjective report and 8% when based on SIN performance, 2) hearing complaints and hyperacusis were more common in listeners with self-reported noise exposure histories than controls, 3) neither extended high frequency thresholds nor compound action potential amplitudes differed between noise-exposed and control groups, 4) extended high frequency hearing thresholds and compound action potential amplitudes were not predictive of SIN performance. These results suggest an association between noise exposure and hearing complaints in young, normal hearing listeners; however, SIN performance variability is not explained by peripheral auditory function to the extent that these measures capture subtle physiologic differences between participants.
Collapse
|