1
|
Brown A, Zhu M, Rohani A, Ladak H, Agrawal SK, Stankovic KM, Welling DB. Surgical Considerations in Inner Ear Gene Therapy from Human Temporal Bone Anatomy. Laryngoscope 2024; 134:2879-2888. [PMID: 38197496 DOI: 10.1002/lary.31259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE(S) Recently directed methods of inner ear drug delivery underscore the necessity for understanding critical anatomical dimensions. This study examines anatomical measurements of the human middle and inner ear relevant for inner ear drug delivery studied with three different imaging modalities. METHODS Post-mortem human temporal bones were analyzed using human temporal bone histopathology (N = 24), micro computerized tomography (μCT; N = 4), and synchrotron radiation phase-contrast imaging (SR-PCI; N = 7). Nine measurements involving the oval and round windows were performed when relevant anatomical structures were visualized for subsequent age-controlled analysis, and comparisons were made between imaging methods. RESULTS Combined human temporal bone histopathology showed the mean distance to the saccule from the center of the stapes footplate (FP) was 2.07 ± 0.357 mm and the minimum distance was 1.23 mm. The mean distance from the round window membrane (RWM) to the osseous spiral lamina (OSL) was 1.75 ± 0.199 mm and the minimum distance was 1.43 mm. Instruments inserted up to 1 mm past the center of the FP are unlikely to cause saccular damage, provided there are no endolymphatic hydrops. Similarly, instruments inserted up to 1 mm through the RWM in the trajectory toward the OSL are unlikely to cause OSL damage. CONCLUSION The combined analyses of inner-ear dimensions of age-controlled groups and imaging modalities demonstrate critical dimensions of importance to consider when inserting delivery vehicles into the human cochlea. LEVEL OF EVIDENCE N/A Laryngoscope, 134:2879-2888, 2024.
Collapse
Affiliation(s)
- Alyssa Brown
- Department of Otolaryngology-Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard University, Boston, Massachusetts, U.S.A
| | - MengYu Zhu
- Department of Otolaryngology-Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard University, Boston, Massachusetts, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Otopathology Laboratory, Boston, Massachusetts, U.S.A
| | - Alireza Rohani
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
- Department of Electrical and Computer Engineering, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Sumit K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Konstantina M Stankovic
- Department of Otolaryngology Head and Neck Surgery, Stanford University, Palo Alto, California, U.S.A
| | - D Bradley Welling
- Department of Otolaryngology-Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard University, Boston, Massachusetts, U.S.A
- Division of Otology and Neurotology, Harvard Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, U.S.A
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, U.S.A
| |
Collapse
|
2
|
Yang S, Wu Y, Cheng X, Zhang LW, Yu Y, Wang Y, Wang Y. Harnessing astaxanthin-loaded diselenium cross-linked apotransferrin nanoparticles for the treatment of secretory otitis media. J Control Release 2024; 365:398-411. [PMID: 38007194 DOI: 10.1016/j.jconrel.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Secretory otitis media (SOM) is a clinical condition characterized by the accumulation of fluids and oxidative stress in the middle ear, leading to hearing impairment and infection complications. One potential solution for mitigating oxidative stress associated with SOM is the use of antioxidants such as astaxanthin. However, its effectiveness is limited due to its poor bioavailability and rapid oxidation. Herein, we developed a novel diselenium-crosslinked apotransferrin enriched with astaxanthin (AST@dSe-AFT) nanoparticles to augment the transport of astaxanthin across biological membranes, resulting in increased bioavailability and reduced oxidative stress in SOM. Our research demonstrated that AST@dSe-AFT efficiently accumulated in the middle ear, allowing for controlled delivery of astaxanthin in response to reactive oxygen species and reducing oxidative stress. Additionally, AST@dSe-AFT stimulated macrophages to polarize towards M2 phenotype and neutrophils to polarize towards N2 phenotype, thereby facilitating an anti-inflammatory response and tissue restoration. Importantly, AST@dSe-AFT exhibited no toxicity or adverse effects, suggesting its potential for safety and future clinical translation. Our findings suggested that AST@dSe-AFT represents a promising approach for the treatment of secretory otitis media and other oxidative stress-related disorders.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yafeng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
4
|
Yildiz E, Gerlitz M, Gadenstaetter AJ, Landegger LD, Nieratschker M, Schum D, Schmied M, Haase A, Kanz F, Kramer AM, Glueckert R, Staecker H, Honeder C, Arnoldner C. Single-Incision Cochlear Implantation and Hearing Evaluation in Piglets and Minipigs. Hear Res 2022; 426:108644. [DOI: 10.1016/j.heares.2022.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/04/2022]
|
5
|
Transcriptome-Guided Identification of Drugs for Repurposing to Treat Age-Related Hearing Loss. Biomolecules 2022; 12:biom12040498. [PMID: 35454087 PMCID: PMC9028743 DOI: 10.3390/biom12040498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related hearing loss (ARHL) or presbycusis is a prevalent condition associated with social isolation, cognitive impairment, and dementia. Age-related changes in the cochlea, the auditory portion of the inner ear, are the primary cause of ARHL. Unfortunately, there are currently no pharmaceutical approaches to treat ARHL. To examine the biological processes underlying age-related changes in the cochlea and identify candidate drugs for rapid repurposing to treat ARHL, we utilized bulk RNA sequencing to obtain transcriptomes from the functional substructures of the cochlea—the sensorineural structures, including the organ of Corti and spiral ganglion neurons (OC/SGN) and the stria vascularis and spiral ligament (SV/SL)—in young (6-week-old) and old (2-year-old) C57BL/6 mice. Transcriptomic analyses revealed both overlapping and unique patterns of gene expression and gene enrichment between substructures and with ageing. Based on these age-related transcriptional changes, we queried the protein products of genes differentially expressed with ageing in DrugBank and identified 27 FDA/EMA-approved drugs that are suitable to be repurposed to treat ARHL. These drugs target the protein products of genes that are differentially expressed with ageing uniquely in either the OC/SGN or SV/SL and that interrelate diverse biological processes. Further transcriptomic analyses revealed that most genes differentially expressed with ageing in both substructures encode protein products that are promising drug target candidates but are, nevertheless, not yet linked to approved drugs. Thus, with this study, we apply a novel approach to characterize the druggable genetic landscape for ARHL and propose a list of drugs to test in pre-clinical studies as potential treatment options for ARHL.
Collapse
|
6
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
7
|
Frisina RD, Bazard P, Bauer M, Pineros J, Zhu X, Ding B. Translational implications of the interactions between hormones and age-related hearing loss. Hear Res 2020; 402:108093. [PMID: 33097316 DOI: 10.1016/j.heares.2020.108093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Provocative research has revealed both positive and negative effects of hormones on hearing as we age; with in some cases, mis-regulation of hormonal levels in instances of medical comorbidities linked to aging, lying at the heart of the problem. Animal model studies have discovered that hormonal fluctuations can sharpen hearing for improved communication and processing of mating calls during reproductive seasons. Sex hormones sometimes have positive effects on auditory processing, as is often the case with estrogen, whereas combinations of estrogen and progesterone, and testosterone, can have negative effects on hearing abilities, particularly in aging subjects. Too much or too little of some hormones can be detrimental, as is the case for aldosterone and thyroid hormones, which generally decline in older individuals. Too little insulin, as in Type 1 diabetics, or poor regulation of insulin, as in Type 2 diabetics, is also harmful to hearing in our aged population. In terms of clinical translational possibilities, hormone therapies can be problematic due to systemic side effects, as has happened for estrogen/progestin combination hormone replacement therapy (HRT) in older women, where the HRT induces a hearing loss. As hormone therapy approaches are further developed, it may be possible to lower needed doses of hormones by combining them with supplements, such as antioxidants. Another option will be to take advantage of emerging technologies for local drug delivery to the inner ear, including biodegradeable, sustained-release hydrogels and micro-pumps which can be implanted in the middle ear near the round window. In closing, exciting research completed to date, summarized in the present report bodes well for emerging biomedical therapies to prevent or treat age-related hearing loss utilizing hormonal strategies.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA.
| | - P Bazard
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - M Bauer
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - J Pineros
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - X Zhu
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - B Ding
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| |
Collapse
|
8
|
Tanael M. A Novel Therapy for Presbycusis. Rejuvenation Res 2020; 24:3-5. [PMID: 32475254 DOI: 10.1089/rej.2020.2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hearing amplification is the mainstay of treatment for presbycusis, but adherence with this therapy remains abysmally low, necessitating the exploration of other treatment modalities. Mineralocorticoids represent one such novel treatment modality. Although research on mineralocorticoids to prevent and retard presbycusis in humans shows promise and the potential to radically change the way clinicians approach age-related hearing loss, it remains in its infancy. Future studies that further evaluate the safety and efficacy of mineralocorticoids for presbycusis are still required for this potentially paradigm shifting therapy to gain widespread acceptance.
Collapse
Affiliation(s)
- Michael Tanael
- U.S. Air Force, Maxwell Air Force Base, Flight Medicine, Montgomery, Alabama, USA
| |
Collapse
|
9
|
Anderson CR, Xie C, Su MP, Garcia M, Blackshaw H, Schilder AGM. Local Delivery of Therapeutics to the Inner Ear: The State of the Science. Front Cell Neurosci 2019; 13:418. [PMID: 31649507 PMCID: PMC6794458 DOI: 10.3389/fncel.2019.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Advances in the understanding of the genetic and molecular etiologies of inner ear disorders have enabled the identification of therapeutic targets and innovative delivery approaches to the inner ear. As this field grows, the need for knowledge about effective delivery of therapeutics to the inner ear has become a priority. This review maps all clinical and pre-clinical research published in English in the field to date, to guide both researchers and clinicians about local drug delivery methods in the context of novel therapeutics. Methods: A systematic search was conducted using customized strategies in Cochrane, pubmed and EMBASE databases from inception to 30/09/2018. Two researchers undertook study selection and data extraction independently. Results: Our search returned 12,200 articles, of which 837 articles met the inclusion criteria. 679 were original research and 158 were reviews. There has been a steady increase in the numbers of publications related to inner ear therapeutics delivery over the last three decades, with a sharp rise over the last 2 years. The intra-tympanic route accounts for over 70% of published articles. Less than one third of published research directly assesses delivery efficacy, with most papers using clinical efficacy as a surrogate marker. Conclusion: Research into local therapeutic delivery to the inner ear has undergone a recent surge, improving our understanding of how novel therapeutics can be delivered. Direct assessment of delivery efficacy is challenging, especially in humans, and progress in this area is key to understanding how to make decisions about delivery of novel hearing therapeutics.
Collapse
Affiliation(s)
- Caroline R. Anderson
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Carol Xie
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Matthew P. Su
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Maria Garcia
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Helen Blackshaw
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anne G. M. Schilder
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
10
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
11
|
Moudgalya SS, Wilson K, Zhu X, Budzevich MM, Walton JP, Cahill ND, Frisina RD, Borkholder DA. Cochlear pharmacokinetics - Micro-computed tomography and learning-prediction modeling for transport parameter determination. Hear Res 2019; 380:46-59. [PMID: 31181459 DOI: 10.1016/j.heares.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Inner ear disorders such as sensorineural deafness and genetic diseases may one day be treated with local drug delivery to the inner ear. Current pharmacokinetic models have been based on invasive methods to measure drug concentrations, limiting them in spatial resolution, and restricting the research to larger rodents. We developed an intracochlear pharmacokinetic model based on an imaging, learning-prediction (LP) paradigm for learning transport parameters in the murine cochlea. This was achieved using noninvasive micro-computed tomography imaging of the cochlea during in vivo infusion of a contrast agent at the basal end of scala tympani through a cochleostomy. Each scan was registered in 3-D to a cochlear atlas to segment the cochlear regions with high accuracy, enabling concentrations to be extracted along the length of each scala. These spatio-temporal concentration profiles were used to learn a concentration dependent diffusion coefficient, and transport parameters between the major scalae and to clearance. The LP model results are comparable to the current state of the art model, and can simulate concentrations for cases involving different infusion molecules and different drug delivery protocols. Forward simulation results with pulsatile delivery suggest the pharmacokinetic model can be used to optimize drug delivery protocols to reduce total drug delivered and the potential for toxic side effects. While developed in the challenging murine cochlea, the processes are scalable to larger animals and different drug infusion paradigms.
Collapse
Affiliation(s)
- Sanketh S Moudgalya
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Kevin Wilson
- Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, University of Southern Florida, Tampa, FL, USA; Global Center for Hearing and Speech Research, University of Southern Florida, Tampa, FL, USA
| | | | - Joseph P Walton
- Department of Medical Engineering, University of Southern Florida, Tampa, FL, USA; Global Center for Hearing and Speech Research, University of Southern Florida, Tampa, FL, USA; Department of Communication Sciences and Disorders, University of Southern Florida, Tampa, FL, USA
| | - Nathan D Cahill
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA; School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Robert D Frisina
- Department of Medical Engineering, University of Southern Florida, Tampa, FL, USA; Global Center for Hearing and Speech Research, University of Southern Florida, Tampa, FL, USA
| | - David A Borkholder
- Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY, USA; Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|