1
|
Puertollano M, Ribas-Prats T, Gorina-Careta N, Ijjou-Kadiri S, Arenillas-Alcón S, Mondéjar-Segovia A, Dolores Gómez-Roig M, Escera C. Longitudinal trajectories of the neural encoding mechanisms of speech-sound features during the first year of life. BRAIN AND LANGUAGE 2024; 258:105474. [PMID: 39326253 DOI: 10.1016/j.bandl.2024.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Infants quickly recognize the sounds of their mother language, perceiving the spectrotemporal acoustic features of speech. However, the underlying neural machinery remains unclear. We used an auditory evoked potential termed frequency-following response (FFR) to unravel the neural encoding maturation for two speech sound characteristics: voice pitch and temporal fine structure. 37 healthy-term neonates were tested at birth and retested at the ages of six and twelve months. Results revealed a reduction in neural phase-locking onset to the stimulus envelope from birth to six months, stabilizing by twelve months. While neural encoding of voice pitch remained consistent across ages, temporal fine structure encoding matured rapidly from birth to six months, without further improvement from six to twelve months. Results highlight the critical importance of the first six months of life in the maturation of neural encoding mechanisms that are crucial for phoneme discrimination during early language acquisition.
Collapse
Affiliation(s)
- Marta Puertollano
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Natàlia Gorina-Careta
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Siham Ijjou-Kadiri
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alejandro Mondéjar-Segovia
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Catalonia, Spain
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
2
|
Gorina-Careta N, Arenillas-Alcón S, Puertollano M, Mondéjar-Segovia A, Ijjou-Kadiri S, Costa-Faidella J, Gómez-Roig MD, Escera C. Exposure to bilingual or monolingual maternal speech during pregnancy affects the neurophysiological encoding of speech sounds in neonates differently. Front Hum Neurosci 2024; 18:1379660. [PMID: 38841122 PMCID: PMC11150635 DOI: 10.3389/fnhum.2024.1379660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Exposure to maternal speech during the prenatal period shapes speech perception and linguistic preferences, allowing neonates to recognize stories heard frequently in utero and demonstrating an enhanced preference for their mother's voice and native language. Yet, with a high prevalence of bilingualism worldwide, it remains an open question whether monolingual or bilingual maternal speech during pregnancy influence differently the fetus' neural mechanisms underlying speech sound encoding. Methods In the present study, the frequency-following response (FFR), an auditory evoked potential that reflects the complex spectrotemporal dynamics of speech sounds, was recorded to a two-vowel /oa/ stimulus in a sample of 129 healthy term neonates within 1 to 3 days after birth. Newborns were divided into two groups according to maternal language usage during the last trimester of gestation (monolingual; bilingual). Spectral amplitudes and spectral signal-to-noise ratios (SNR) at the stimulus fundamental (F0) and first formant (F1) frequencies of each vowel were, respectively, taken as measures of pitch and formant structure neural encoding. Results Our results reveal that while spectral amplitudes at F0 did not differ between groups, neonates from bilingual mothers exhibited a lower spectral SNR. Additionally, monolingually exposed neonates exhibited a higher spectral amplitude and SNR at F1 frequencies. Discussion We interpret our results under the consideration that bilingual maternal speech, as compared to monolingual, is characterized by a greater complexity in the speech sound signal, rendering newborns from bilingual mothers more sensitive to a wider range of speech frequencies without generating a particularly strong response at any of them. Our results contribute to an expanding body of research indicating the influence of prenatal experiences on language acquisition and underscore the necessity of including prenatal language exposure in developmental studies on language acquisition, a variable often overlooked yet capable of influencing research outcomes.
Collapse
Affiliation(s)
- Natàlia Gorina-Careta
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sonia Arenillas-Alcón
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Puertollano
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alejandro Mondéjar-Segovia
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
| | - Siham Ijjou-Kadiri
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Costa-Faidella
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain
| | - Carles Escera
- Brainlab – Cognitive Neuroscience Research Group, Departament de Psicologia Clinica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociènces, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Ribas-Prats T, Arenillas-Alcón S, Martínez SIF, Gómez-Roig MD, Escera C. The frequency-following response in late preterm neonates: a pilot study. Front Psychol 2024; 15:1341171. [PMID: 38784610 PMCID: PMC11112609 DOI: 10.3389/fpsyg.2024.1341171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Infants born very early preterm are at high risk of language delays. However, less is known about the consequences of late prematurity. Hence, the aim of the present study is to characterize the neural encoding of speech sounds in late preterm neonates in comparison with those born at term. Methods The speech-evoked frequency-following response (FFR) was recorded to a consonant-vowel stimulus /da/ in 36 neonates in three different groups: 12 preterm neonates [mean gestational age (GA) 36.05 weeks], 12 "early term neonates" (mean GA 38.3 weeks), and "late term neonates" (mean GA 41.01 weeks). Results From the FFR recordings, a delayed neural response and a weaker stimulus F0 encoding in premature neonates compared to neonates born at term was observed. No differences in the response time onset nor in stimulus F0 encoding were observed between the two groups of neonates born at term. No differences between the three groups were observed in the neural encoding of the stimulus temporal fine structure. Discussion These results highlight alterations in the neural encoding of speech sounds related to prematurity, which were present for the stimulus F0 but not for its temporal fine structure.
Collapse
Affiliation(s)
- Teresa Ribas-Prats
- Brainlab–Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sonia Arenillas-Alcón
- Brainlab–Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Silvia Irene Ferrero Martínez
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- BCNatal–Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain
| | - Maria Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- BCNatal–Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain
| | - Carles Escera
- Brainlab–Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
4
|
Ribas-Prats T, Cordero G, Lip-Sosa DL, Arenillas-Alcón S, Costa-Faidella J, Gómez-Roig MD, Escera C. Developmental Trajectory of the Frequency-Following Response During the First 6 Months of Life. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4785-4800. [PMID: 37944057 DOI: 10.1044/2023_jslhr-23-00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
PURPOSE The aim of the present study is to characterize the maturational changes during the first 6 months of life in the neural encoding of two speech sound features relevant for early language acquisition: the stimulus fundamental frequency (fo), related to stimulus pitch, and the vowel formant composition, particularly F1. The frequency-following response (FFR) was used as a snapshot into the neural encoding of these two stimulus attributes. METHOD FFRs to a consonant-vowel stimulus /da/ were retrieved from electroencephalographic recordings in a sample of 80 healthy infants (45 at birth and 35 at the age of 1 month). Thirty-two infants (16 recorded at birth and 16 recorded at 1 month) returned for a second recording at 6 months of age. RESULTS Stimulus fo and F1 encoding showed improvements from birth to 6 months of age. Most remarkably, a significant improvement in the F1 neural encoding was observed during the first month of life. CONCLUSION Our results highlight the rapid and sustained maturation of the basic neural machinery necessary for the phoneme discrimination ability during the first 6 months of age.
Collapse
Affiliation(s)
- Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Gaël Cordero
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Diana Lucia Lip-Sosa
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Spain
| | - Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jordi Costa-Faidella
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Spain
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
5
|
Arenillas-Alcón S, Ribas-Prats T, Puertollano M, Mondéjar-Segovia A, Gómez-Roig MD, Costa-Faidella J, Escera C. Prenatal daily musical exposure is associated with enhanced neural representation of speech fundamental frequency: Evidence from neonatal frequency-following responses. Dev Sci 2023; 26:e13362. [PMID: 36550689 DOI: 10.1111/desc.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Fetal hearing experiences shape the linguistic and musical preferences of neonates. From the very first moment after birth, newborns prefer their native language, recognize their mother's voice, and show a greater responsiveness to lullabies presented during pregnancy. Yet, the neural underpinnings of this experience inducing plasticity have remained elusive. Here we recorded the frequency-following response (FFR), an auditory evoked potential elicited to periodic complex sounds, to show that prenatal music exposure is associated to enhanced neural encoding of speech stimuli periodicity, which relates to the perceptual experience of pitch. FFRs were recorded in a sample of 60 healthy neonates born at term and aged 12-72 hours. The sample was divided into two groups according to their prenatal musical exposure (29 daily musically exposed; 31 not-daily musically exposed). Prenatal exposure was assessed retrospectively by a questionnaire in which mothers reported how often they sang or listened to music through loudspeakers during the last trimester of pregnancy. The FFR was recorded to either a /da/ or an /oa/ speech-syllable stimulus. Analyses were centered on stimuli sections of identical duration (113 ms) and fundamental frequency (F0 = 113 Hz). Neural encoding of stimuli periodicity was quantified as the FFR spectral amplitude at the stimulus F0 . Data revealed that newborns exposed daily to music exhibit larger spectral amplitudes at F0 as compared to not-daily musically-exposed newborns, regardless of the eliciting stimulus. Our results suggest that prenatal music exposure facilitates the tuning to human speech fundamental frequency, which may support early language processing and acquisition. RESEARCH HIGHLIGHTS: Frequency-following responses to speech were collected from a sample of neonates prenatally exposed to music daily and compared to neonates not-daily exposed to music. Neonates who experienced daily prenatal music exposure exhibit enhanced frequency-following responses to the periodicity of speech sounds. Prenatal music exposure is associated with a fine-tuned encoding of human speech fundamental frequency, which may facilitate early language processing and acquisition.
Collapse
Affiliation(s)
- Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
| | - Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
| | - Marta Puertollano
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
| | - Alejandro Mondéjar-Segovia
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
- BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Catalonia, Spain
| | - Jordi Costa-Faidella
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Catalonia, Spain
| |
Collapse
|
6
|
Ribas-Prats T, Arenillas-Alcón S, Pérez-Cruz M, Costa-Faidella J, Gómez-Roig MD, Escera C. Speech-Encoding Deficits in Neonates Born Large-for-Gestational Age as Revealed With the Envelope Frequency-Following Response. Ear Hear 2023:00003446-990000000-00115. [PMID: 36759954 DOI: 10.1097/aud.0000000000001330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The present envelope frequency-following response (FFRENV) study aimed at characterizing the neural encoding of the fundamental frequency of speech sounds in neonates born at the higher end of the birth weight continuum (>90th percentile), known as large-for-gestational age (LGA). DESIGN Twenty-five LGA newborns were recruited from the maternity unit of Sant Joan de Déu Barcelona Children's Hospital and paired by age and sex with 25 babies born adequate-for-gestational age (AGA), all from healthy mothers and normal pregnancies. FFRENVs were elicited to the/da/ syllable and recorded while the baby was sleeping in its cradle after a successful universal hearing screening. Neural encoding of the stimulus' envelope of the fundamental frequency (F0ENV) was characterized through the FFRENV spectral amplitude. Relationships between electrophysiological parameters and maternal/neonatal variables that may condition neonatal neurodevelopment were assessed, including pregestational body mass index (BMI), maternal gestational weight gain and neonatal BMI. RESULTS LGA newborns showed smaller spectral amplitudes at the F0ENV compared to the AGA group. Significant negative correlations were found between neonatal BMI and the spectral amplitude at the F0ENV. CONCLUSIONS Our results indicate that in spite of having a healthy pregnancy, LGA neonates' central auditory system is impaired in encoding a fundamental aspect of the speech sounds, namely their fundamental frequency. The negative correlation between the neonates' BMI and FFRENV indicates that this impaired encoding is independent of the pregnant woman BMI and weight gain during pregnancy, supporting the role of the neonatal BMI. We suggest that the higher adipose tissue observed in the LGA group may impair, via proinflammatory products, the fine-grained central auditory system microstructure required for the neural encoding of the fundamental frequency of speech sounds.
Collapse
Affiliation(s)
- Teresa Ribas-Prats
- Brainlab-Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Sonia Arenillas-Alcón
- Brainlab-Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Míriam Pérez-Cruz
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.,BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Costa-Faidella
- Brainlab-Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Maria Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.,BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group. Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Jeng FC, Jeng YS. Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial. Semin Hear 2022; 43:251-274. [PMID: 36313046 PMCID: PMC9605809 DOI: 10.1055/s-0042-1756219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The frequency-following response (FFR) provides enriched information on how acoustic stimuli are processed in the human brain. Based on recent studies, machine learning techniques have demonstrated great utility in modeling human FFRs. This tutorial focuses on the fundamental principles, algorithmic designs, and custom implementations of several supervised models (linear regression, logistic regression, k -nearest neighbors, support vector machines) and an unsupervised model ( k -means clustering). Other useful machine learning tools (Markov chains, dimensionality reduction, principal components analysis, nonnegative matrix factorization, and neural networks) are discussed as well. Each model's applicability and its pros and cons are explained. The choice of a suitable model is highly dependent on the research question, FFR recordings, target variables, extracted features, and their data types. To promote understanding, an example project implemented in Python is provided, which demonstrates practical usage of several of the discussed models on a sample dataset of six FFR features and a target response label.
Collapse
Affiliation(s)
- Fuh-Cherng Jeng
- Communication Sciences and Disorders, Ohio University, Athens, Ohio
| | - Yu-Shiang Jeng
- Computer Science and Engineering, Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Parker A, Skoe E, Tecoulesco L, Naigles L. A Home-Based Approach to Auditory Brainstem Response Measurement: Proof-of-Concept and Practical Guidelines. Semin Hear 2022; 43:177-196. [PMID: 36313050 PMCID: PMC9605808 DOI: 10.1055/s-0042-1756163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Broad-scale neuroscientific investigations of diverse human populations are difficult to implement. This is because the primary neuroimaging methods (magnetic resonance imaging, electroencephalography [EEG]) historically have not been portable, and participants may be unable or unwilling to travel to test sites. Miniaturization of EEG technologies has now opened the door to neuroscientific fieldwork, allowing for easier access to under-represented populations. Recent efforts to conduct auditory neuroscience outside a laboratory setting are reviewed and then an in-home technique for recording auditory brainstem responses (ABRs) and frequency-following responses (FFRs) in a home setting is introduced. As a proof of concept, we have conducted two in-home electrophysiological studies: one in 27 children aged 6 to 16 years (13 with autism spectrum disorder) and another in 12 young adults aged 18 to 27 years, using portable electrophysiological equipment to record ABRs and FFRs to click and speech stimuli, spanning rural and urban and multiple homes and testers. We validate our fieldwork approach by presenting waveforms and data on latencies and signal-to-noise ratio. Our findings demonstrate the feasibility and utility of home-based ABR/FFR techniques, paving the course for larger fieldwork investigations of populations that are difficult to test or recruit. We conclude this tutorial with practical tips and guidelines for recording ABRs and FFRs in the field and discuss possible clinical and research applications of this approach.
Collapse
Affiliation(s)
- Ashley Parker
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
| | - Lee Tecoulesco
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Letitia Naigles
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
9
|
Gorina-Careta N, Ribas-Prats T, Arenillas-Alcón S, Puertollano M, Gómez-Roig MD, Escera C. Neonatal Frequency-Following Responses: A Methodological Framework for Clinical Applications. Semin Hear 2022; 43:162-176. [PMID: 36313048 PMCID: PMC9605802 DOI: 10.1055/s-0042-1756162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The frequency-following response (FFR) to periodic complex sounds is a noninvasive scalp-recorded auditory evoked potential that reflects synchronous phase-locked neural activity to the spectrotemporal components of the acoustic signal along the ascending auditory hierarchy. The FFR has gained recent interest in the fields of audiology and auditory cognitive neuroscience, as it has great potential to answer both basic and applied questions about processes involved in sound encoding, language development, and communication. Specifically, it has become a promising tool in neonates, as its study may allow both early identification of future language disorders and the opportunity to leverage brain plasticity during the first 2 years of life, as well as enable early interventions to prevent and/or ameliorate sound and language encoding disorders. Throughout the present review, we summarize the state of the art of the neonatal FFR and, based on our own extensive experience, present methodological approaches to record it in a clinical environment. Overall, the present review is the first one that comprehensively focuses on the neonatal FFRs applications, thus supporting the feasibility to record the FFR during the first days of life and the predictive potential of the neonatal FFR on detecting short- and long-term language abilities and disruptions.
Collapse
Affiliation(s)
- Natàlia Gorina-Careta
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
- BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain.
| | - Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
| | - Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
| | - Marta Puertollano
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
| | - M Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
- BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain.
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain
- Institute of Neurosciences, University of Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Jeng FC, Lin TH, Hart BN, Montgomery-Reagan K, McDonald K. Non-negative matrix factorization improves the efficiency of recording frequency-following responses in normal-hearing adults and neonates. Int J Audiol 2022:1-11. [PMID: 35522832 DOI: 10.1080/14992027.2022.2071345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE One challenge in extracting the scalp-recorded frequency-following response (FFR) is related to its inherently small amplitude, which means that the response cannot be identified with confidence when only a relatively small number of recording sweeps are included in the averaging procedure. DESIGN This study examined how the non-negative matrix factorisation (NMF) algorithm with a source separation constraint could be applied to improve the efficiency of FFR recordings. Conventional FFRs elicited by an English vowel/i/with a rising frequency contour were collected. Study sample: Fifteen normal-hearing adults and 15 normal-hearing neonates were recruited. RESULTS The improvements of FFR recordings, defined as the correlation coefficient and root-mean-square differences across a sweep series of amplitude spectrograms before and after the application of the source separation NMF (SSNMF) algorithm, were characterised through an exponential curve fitting model. Statistical analysis of variance indicated that the SSNMF algorithm was able to enhance the FFRs recorded in both groups of participants. CONCLUSIONS Such improvements enabled FFR extractions in a relatively small number of recording sweeps, and opened a new window to better understand how speech sounds are processed in the human brain.
Collapse
Affiliation(s)
- Fuh-Cherng Jeng
- Communication Sciences and Disorders, Ohio University, Athens, OH, USA
| | - Tzu-Hao Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Breanna N Hart
- Communication Sciences and Disorders, Ohio University, Athens, OH, USA
| | | | - Kalyn McDonald
- Communication Sciences and Disorders, Ohio University, Athens, OH, USA
| |
Collapse
|
11
|
Ribas-Prats T, Arenillas-Alcón S, Lip-Sosa DL, Costa-Faidella J, Mazarico E, Gómez-Roig MD, Escera C. Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction. Dev Sci 2021; 25:e13189. [PMID: 34758093 DOI: 10.1111/desc.13189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Infants born after fetal growth restriction (FGR)-an obstetric condition defined as the failure to achieve the genetic growth potential-are prone to neurodevelopmental delays, with language being one of the major affected areas. Yet, while verbal comprehension and expressive language impairments have been observed in FGR infants, children and even adults, specific related impairments at birth, such as in the ability to encode the sounds of speech, necessary for language acquisition, remain to be disclosed. Here, we used the frequency-following response (FFR), a brain potential correlate of the neural phase locking to complex auditory stimuli, to explore the encoding of speech sounds in FGR neonates. Fifty-three neonates born with FGR and 48 controls born with weight adequate-for-gestational age (AGA) were recruited. The FFR was recorded to the consonant-vowel stimulus (/da/) during sleep and quantified as the spectral amplitude to the fundamental frequency of the syllable and its signal-to-noise ratio (SNR). The outcome was available in 45 AGA and 51 FGR neonates, yielding no differences for spectral amplitudes. However, SNR was strongly attenuated in the FGR group compared to the AGA group at the vowel region of the stimulus. These findings suggest that FGR population present a deficit in the neural pitch tracking of speech sounds already present at birth. Our results pave the way for future research on the potential clinical use of the FFR in this population, so that if confirmed, a disrupted FFR recorded at birth may help deriving FGR neonates at risk for postnatal follow-ups.
Collapse
Affiliation(s)
- Teresa Ribas-Prats
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Sonia Arenillas-Alcón
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Diana Lucia Lip-Sosa
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.,BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Costa-Faidella
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Edurne Mazarico
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.,BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain.,BCNatal - Barcelona Center for Maternal Fetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Catalonia, Spain
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Effect of Auditory Maturation on the Encoding of a Speech Syllable in the First Days of Life. Brain Sci 2021; 11:brainsci11070844. [PMID: 34202020 PMCID: PMC8301960 DOI: 10.3390/brainsci11070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: In neonates and infants, the physiological modifications associated with language development are reflected in their Frequency Following Responses (FFRs) in the first few months of life. (2) Objective: This study aimed to test the FFRs of infants in the first 45 days of life in order to evaluate how auditory maturation affects the encoding of a speech syllable. (3) Method: In total, 80 healthy, normal-hearing infants, aged 3 to 45 days old, participated in this study. The sample was divided into three groups: GI, 38 neonates from 3 to 15 days; GII, 25 infants from 16 to 30 days; and GIII, 17 infants from 31 to 45 days. All participants underwent FFR testing. Results: With age, there was a decrease in the latency of all FFR waves, with statistically significant differences among the groups studied for waves V, A, E, F, and O. The mean amplitudes showed an increase, with a statistically significant difference only for wave V. The slope measure increased over the 45 days, with a statistically significant difference between GIII and GI and between GIII and GII. (4) Conclusions: The encoding of a speech sound changes with auditory maturation over the first 45 days of an infant’s life.
Collapse
|
13
|
Lemos FA, da Silva Nunes AD, de Souza Evangelista CK, Escera C, Taveira KVM, Balen SA. Frequency-Following Response in Newborns and Infants: A Systematic Review of Acquisition Parameters. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2085-2102. [PMID: 34057846 DOI: 10.1044/2021_jslhr-20-00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose The purpose of this study is to characterize parameters used for frequency-following response (FFR) acquisition in children up to 24 months of age through a systematic review. Method The study was registered in PROSPERO and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses' recommendations. Search was performed in six databases (LILACS, LIVIVO, PsycINFO, PubMed, Scopus, and Web of Science) and gray literature (Google Scholar, OpenGrey, ProQuest)as well as via manual searches in bibliographic references. Observational studies using speech stimuli to elicit the FFR in infants with normal hearing on the age range from 0 until 24 months were included. No restrictions regarding language and year of publication were applied. Risk of bias was assessed with the Joanna Briggs Institute Critical Appraisal Checklist. Data on stimulus, presentation rate, time window for analysis, number of sweeps, artifact rejection, online filters, stimulated ear, and examination condition were extracted. Results Four hundred fifty-nine studies were identified. After removing duplicates and reading titles and abstracts, 15 articles were included. Seven studies were classified as low risk of bias, seven as moderate risk, and one as high risk. Conclusions There is a consensus in the use of some acquisition parameters of the FFR with speech stimulus, such as the vertical mounting, the use of alternating polarity, a sampling rate of 20000 Hz, and the /da/ synthesized syllable of 40 ms in duration as the preferred stimulus. Although these parameters show some consensus, the results disclosed lack of a single established protocol for FFR acquisition with speech stimulus in infants in the investigated age range.
Collapse
Affiliation(s)
- Fabiana Aparecida Lemos
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Aryelly Dayane da Silva Nunes
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Carolina Karla de Souza Evangelista
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| | - Carles Escera
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Spain
- Sant Joan de Déu Research Institute, Esplugues de Llobregat Barcelona, Spain
| | | | - Sheila Andreoli Balen
- Speech, Language and Hearing Sciences Graduate Program, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
- Laboratory of Technological Innovation in Health of the Federal University of Rio Grande do Norte (LAIS/UFRN), Natal, Brazil
| |
Collapse
|
14
|
Madrid AM, Walker KA, Smith SB, Hood LJ, Prieve BA. Relationships between click auditory brainstem response and speech frequency following response with development in infants born preterm. Hear Res 2021; 407:108277. [PMID: 34091212 DOI: 10.1016/j.heares.2021.108277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
The speech evoked frequency following response (sFFR) is used to study relationships between neural processing and functional aspects of speech and language that are not captured by click or toneburst evoked auditory brainstem responses (ABR). The sFFR is delayed, deviant, or weak in school age children having a variety of disorders, including autism, dyslexia, reading and language disorders, in relation to their typically developing peers. Much less is known about the developmental characteristics of sFFR, especially in preterm infants, who are at risk of having language delays. In term neonates, phase locking and spectral representation of the fundamental frequency is developed in the early days of life. Spectral representation of higher harmonics and latencies associated with transient portions of the stimulus are still developing in term infants through at least 10 months of age. The goal of this research was to determine whether sFFR could be measured in preterm infants and to characterize its developmental trajectory in the time and frequency domain. Click ABR and sFFR were measured in 28 preterm infants at ages 33 to 64 weeks gestational age. The sFFR could be measured in the majority of infants at 33 weeks gestational age, and the detectability of all sFFR waves was 100% by 64 weeks gestational age. The latency of all waves associated with the transient portion of the response (waves V, A, and O), and most waves (waves D and E) associated with the quasi-steady state decreased with increasing age. The interpeak wave A-O latency did not change with age, indicating that these waves share a neural generator, or the neural generators are developing at the same rate. The spectral amplitude of F0 and the lower frequencies of the first formant increased with age, but that for higher frequencies of the first formant and higher harmonics did not. The results suggest that the sFFR can be reliably recorded in preterm infants, including those cared for in the neonatal intensive care unit. These findings support that in preterm infants, F0 amplitude continues to develop within the first 6 months of life and develops before efficient representation of higher frequency harmonics. Further research is needed to determine if the sFFR in preterm infants is predictive of long-term language or learning disorders.
Collapse
Affiliation(s)
- Angela M Madrid
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Suite 1200, Syracuse, NY 13244, USA
| | - Kerry A Walker
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Suite 1200, Syracuse, NY 13244, USA
| | - Spencer B Smith
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Avenue Stop A1100, Austin, TX 78712, USA
| | - Linda J Hood
- Hearing and Speech Sciences. Vanderbilt University Medical Center, 1215 21(st) Avenue South, Medical Center East, 8310, Nashville, TN 37232, USA
| | - Beth A Prieve
- Department of Communication Sciences and Disorders, Syracuse University, 621 Skytop Suite 1200, Syracuse, NY 13244, USA.
| |
Collapse
|
15
|
Neural encoding of voice pitch and formant structure at birth as revealed by frequency-following responses. Sci Rep 2021; 11:6660. [PMID: 33758251 PMCID: PMC7987955 DOI: 10.1038/s41598-021-85799-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Detailed neural encoding of voice pitch and formant structure plays a crucial role in speech perception, and is of key importance for an appropriate acquisition of the phonetic repertoire in infants since birth. However, the extent to what newborns are capable of extracting pitch and formant structure information from the temporal envelope and the temporal fine structure of speech sounds, respectively, remains unclear. Here, we recorded the frequency-following response (FFR) elicited by a novel two-vowel, rising-pitch-ending stimulus to simultaneously characterize voice pitch and formant structure encoding accuracy in a sample of neonates and adults. Data revealed that newborns tracked changes in voice pitch reliably and no differently than adults, but exhibited weaker signatures of formant structure encoding, particularly at higher formant frequency ranges. Thus, our results indicate a well-developed encoding of voice pitch at birth, while formant structure representation is maturing in a frequency-dependent manner. Furthermore, we demonstrate the feasibility to assess voice pitch and formant structure encoding within clinical evaluation times in a hospital setting, and suggest the possibility to use this novel stimulus as a tool for longitudinal developmental studies of the auditory system.
Collapse
|
16
|
Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study. Neuroimage 2021; 231:117866. [PMID: 33592244 DOI: 10.1016/j.neuroimage.2021.117866] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/03/2023] Open
Abstract
The frequency-following response (FFR) to periodic complex sounds has gained recent interest in auditory cognitive neuroscience as it captures with great fidelity the tracking accuracy of the periodic sound features in the ascending auditory system. Seminal studies suggested the FFR as a correlate of subcortical sound encoding, yet recent studies aiming to locate its sources challenged this assumption, demonstrating that FFR receives some contribution from the auditory cortex. Based on frequency-specific phase-locking capabilities along the auditory hierarchy, we hypothesized that FFRs to higher frequencies would receive less cortical contribution than those to lower frequencies, hence supporting a major subcortical involvement for these high frequency sounds. Here, we used a magnetoencephalographic (MEG) approach to trace the neural sources of the FFR elicited in healthy adults (N = 19) to low (89 Hz) and high (333 Hz) frequency sounds. FFRs elicited to the high and low frequency sounds were clearly observable on MEG and comparable to those obtained in simultaneous electroencephalographic recordings. Distributed source modeling analyses revealed midbrain, thalamic, and cortical contributions to FFR, arranged in frequency-specific configurations. Our results showed that the main contribution to the high-frequency sound FFR originated in the inferior colliculus and the medial geniculate body of the thalamus, with no significant cortical contribution. In contrast, the low-frequency sound FFR had a major contribution located in the auditory cortices, and also received contributions originating in the midbrain and thalamic structures. These findings support the multiple generator hypothesis of the FFR and are relevant for our understanding of the neural encoding of sounds along the auditory hierarchy, suggesting a hierarchical organization of periodicity encoding.
Collapse
|
17
|
Easwar V, Scollie S, Lasarev M, Urichuk M, Aiken SJ, Purcell DW. Characteristics of Speech-Evoked Envelope Following Responses in Infancy. Trends Hear 2021; 25:23312165211004331. [PMID: 34251887 PMCID: PMC8278440 DOI: 10.1177/23312165211004331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Envelope following responses (EFRs) may be a useful tool for evaluating the audibility of speech sounds in infants. The present study aimed to evaluate the characteristics of speech-evoked EFRs in infants with normal hearing, relative to adults, and identify age-dependent changes in EFR characteristics during infancy. In 42 infants and 21 young adults, EFRs were elicited by the first (F1) and the second and higher formants (F2+) of the vowels /u/, /a/, and /i/, dominant in low and mid frequencies, respectively, and by amplitude-modulated fricatives /s/ and /∫/, dominant in high frequencies. In a subset of 20 infants, the in-ear stimulus level was adjusted to match that of an average adult ear (65 dB sound pressure level [SPL]). We found that (a) adult-infant differences in EFR amplitude, signal-to-noise ratio, and intertrial phase coherence were larger and spread across the frequency range when in-ear stimulus level was adjusted in infants, (b) adult-infant differences in EFR characteristics were the largest for low-frequency stimuli, (c) infants demonstrated adult-like phase coherence when they received a higher (i.e., unadjusted) stimulus level, and (d) EFR phase coherence and signal-to-noise ratio changed with age in the first year of life for a few F2+ vowel stimuli in a level-specific manner. Together, our findings reveal that development-related changes in EFRs during infancy likely vary by stimulus frequency, with low-frequency stimuli demonstrating the largest adult-infant differences. Consistent with previous research, our findings emphasize the significant role of stimulus level calibration methods while investigating developmental trends in EFRs.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, United States
- Waisman Center, University of Wisconsin-Madison, Madison, United States
- National Centre for Audiology, Western University, London, Ontario, Canada
| | - Susan Scollie
- National Centre for Audiology, Western University, London, Ontario, Canada
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, United States
| | - Matthew Urichuk
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
- Health and Rehabilitation Sciences, Western University, London, Ontario, Canada
| | - Steven J Aiken
- School of Communication Sciences and Disorders, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David W Purcell
- National Centre for Audiology, Western University, London, Ontario, Canada
- School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Puyana-Romero V, Núñez-Solano D, Fernández-Zacarías F, Jara-Muñoz E, Hernández-Molina R. The Importance of Reverberation for the Design of Neonatal Incubators. Front Pediatr 2021; 9:584736. [PMID: 33898352 PMCID: PMC8058181 DOI: 10.3389/fped.2021.584736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Low frequency noises are predominant in neonatal intensive care units (NICUs). Some studies affirm that neonates can perceive noises from 113 Hz, and can therefore be affected by sound sources with high spectral content at low frequencies (e.g., incubator engine, air fan). Other studies suggest that reverberation amplifies noise within incubators. In this paper, the reverberation time (T, T 30) within an incubator with standard dimensions was measured in one-third octave bands. To get reliable results, the T was measured in 15 positions at the neonate's ear height, in a room with low T values (to reduce the influence of the room in the results), using an impulsive sound method. Results show a heterogeneous T distribution at the neonate's ear height, with maximum average T differences between positions of 1.07 s. The highest average T of all microphone positions is 2.27 s at 125 Hz, an extremely high mean value for such a small space. As the frequency of electrical devices in America is 60 Hz, some harmonics lay within the one-third octave band of 125 Hz, and therefore may create a very reverberant and inappropriate acoustic environment within the audible spectrum of neonates. As the acoustic environment of the incubator and the room are coupled, it is expected that the results are higher in the NICUs than in the room where the measurements were conducted, as NICUs are more reverberant. Therefore, it is recommended that the T will be limited in the international standards, and that incubator designers take it into account.
Collapse
Affiliation(s)
- Virginia Puyana-Romero
- Grupo de Investigación Entornos Acústicos, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Daniel Núñez-Solano
- Grupo de Investigación Entornos Acústicos, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | | | | | | |
Collapse
|
19
|
Parker A, Slack C, Skoe E. Comparisons of Auditory Brainstem Responses Between a Laboratory and Simulated Home Environment. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:3877-3892. [PMID: 33108246 DOI: 10.1044/2020_jslhr-20-00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations.
Collapse
Affiliation(s)
- Ashley Parker
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs
| | - Candace Slack
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs
| |
Collapse
|
20
|
Hart BN, Jeng FC. A Demonstration of Machine Learning in Detecting Frequency Following Responses in American Neonates. Percept Mot Skills 2020; 128:48-58. [PMID: 32962538 DOI: 10.1177/0031512520960390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we sought to evaluate the efficiencies of multiple machine learning algorithms in detecting neonates' Frequency Following Responses (FFRs). We recorded continuous brainwaves from 43 American neonates in response to a pre-recorded monosyllable/i/with a rising frequency contour. Recordings were classified into response and no response categories. Six response features were extracted from each recording and served as predictors in FFR identification. Twenty-three supervised machine learning algorithms with mean efficiency values of 86.0%, 94.4%, 97.2%, and 97.5% when 1, 10, 100, and 1000 random iterations were implemented, respectively. These high efficiency values obtained from the neonatal FFRs demonstrate that machine learning algorithms can help assess pitch processing in neonates and can be applied to auditory screening and intervention services for neonates at risk for disorders associated with decreased pitch processing.
Collapse
Affiliation(s)
- Breanna N Hart
- Communication Sciences and Disorders, Ohio University, Athens, United States
| | - Fuh-Cherng Jeng
- Communication Sciences and Disorders, Ohio University, Athens, United States.,Department of Audiology and Speech Pathology, Asia University, Taichung
| |
Collapse
|
21
|
López-Caballero F, Martin-Trias P, Ribas-Prats T, Gorina-Careta N, Bartrés-Faz D, Escera C. Effects of cTBS on the Frequency-Following Response and Other Auditory Evoked Potentials. Front Hum Neurosci 2020; 14:250. [PMID: 32733220 PMCID: PMC7360924 DOI: 10.3389/fnhum.2020.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
The frequency-following response (FFR) is an auditory evoked potential (AEP) that follows the periodic characteristics of a sound. Despite being a widely studied biosignal in auditory neuroscience, the neural underpinnings of the FFR are still unclear. Traditionally, FFR was associated with subcortical activity, but recent evidence suggested cortical contributions which may be dependent on the stimulus frequency. We combined electroencephalography (EEG) with an inhibitory transcranial magnetic stimulation protocol, the continuous theta burst stimulation (cTBS), to disentangle the cortical contribution to the FFR elicited to stimuli of high and low frequency. We recorded FFR to the syllable /ba/ at two fundamental frequencies (Low: 113 Hz; High: 317 Hz) in healthy participants. FFR, cortical potentials, and auditory brainstem response (ABR) were recorded before and after real and sham cTBS in the right primary auditory cortex. Results showed that cTBS did not produce a significant change in the FFR recorded, in any of the frequencies. No effect was observed in the ABR and cortical potentials, despite the latter known contributions from the auditory cortex. Possible reasons behind the negative results include compensatory mechanisms from the non-targeted areas, intraindividual variability of the cTBS effectiveness, and the particular location of our target area, the primary auditory cortex.
Collapse
Affiliation(s)
- Fran López-Caballero
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Pablo Martin-Trias
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Teresa Ribas-Prats
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Natàlia Gorina-Careta
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - David Bartrés-Faz
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Escera
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| |
Collapse
|
22
|
Van Canneyt J, Wouters J, Francart T. From modulated noise to natural speech: The effect of stimulus parameters on the envelope following response. Hear Res 2020; 393:107993. [PMID: 32535277 DOI: 10.1016/j.heares.2020.107993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
Envelope following responses (EFRs) can be evoked by a wide range of auditory stimuli, but for many stimulus parameters the effect on EFR strength is not fully understood. This complicates the comparison of earlier studies and the design of new studies. Furthermore, the most optimal stimulus parameters are unknown. To help resolve this issue, we investigated the effects of four important stimulus parameters and their interactions on the EFR. Responses were measured in 16 normal hearing subjects evoked by stimuli with four levels of stimulus complexity (amplitude modulated noise, artificial vowels, natural vowels and vowel-consonant-vowel combinations), three fundamental frequencies (105 Hz, 185 Hz and 245 Hz), three fundamental frequency contours (upward sweeping, downward sweeping and flat) and three vowel identities (Flemish /a:/, /u:/, and /i:/). We found that EFRs evoked by artificial vowels were on average 4-6 dB SNR larger than responses evoked by the other stimulus complexities, probably because of (unnaturally) strong higher harmonics. Moreover, response amplitude decreased with fundamental frequency but response SNR remained largely unaffected. Thirdly, fundamental frequency variation within the stimulus did not impact EFR strength, but only when rate of change remained low (e.g. not the case for sweeping natural vowels). Finally, the vowel /i:/ appeared to evoke larger response amplitudes compared to /a:/ and /u:/, but analysis power was too small to confirm this statistically. Vowel-dependent differences in response strength have been suggested to stem from destructive interference between response components. We show how a model of the auditory periphery can simulate these interference patterns and predict response strength. Altogether, the results of this study can guide stimulus choice for future EFR research and practical applications.
Collapse
Affiliation(s)
- Jana Van Canneyt
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 Bus 721, 3000, Leuven, Belgium.
| | - Jan Wouters
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 Bus 721, 3000, Leuven, Belgium.
| | - Tom Francart
- ExpORL, Dept. of Neurosciences, KU Leuven, Herestraat 49 Bus 721, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Richard C, Neel ML, Jeanvoine A, Connell SM, Gehred A, Maitre NL. Characteristics of the Frequency-Following Response to Speech in Neonates and Potential Applicability in Clinical Practice: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1618-1635. [PMID: 32407639 DOI: 10.1044/2020_jslhr-19-00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose We sought to critically analyze and evaluate published evidence regarding feasibility and clinical potential for predicting neurodevelopmental outcomes of the frequency-following responses (FFRs) to speech recordings in neonates (birth to 28 days). Method A systematic search of MeSH terms in the Cumulative Index to Nursing and Allied HealthLiterature, Embase, Google Scholar, Ovid Medline (R) and E-Pub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Web of Science, SCOPUS, COCHRANE Library, and ClinicalTrials.gov was performed. Manual review of all items identified in the search was performed by two independent reviewers. Articles were evaluated based on the level of methodological quality and evidence according to the RTI item bank. Results Seven articles met inclusion criteria. None of the included studies reported neurodevelopmental outcomes past 3 months of age. Quality of the evidence ranged from moderate to high. Protocol variations were frequent. Conclusions Based on this systematic review, the FFR to speech can capture both temporal and spectral acoustic features in neonates. It can accurately be recorded in a fast and easy manner at the infant's bedside. However, at this time, further studies are needed to identify and validate which FFR features could be incorporated as an addition to standard evaluation of infant sound processing evaluation in subcortico-cortical networks. This review identifies the need for further research focused on identifying specific features of the neonatal FFRs, those with predictive value for early childhood outcomes to help guide targeted early speech and hearing interventions.
Collapse
Affiliation(s)
- Céline Richard
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland
| | - Mary Lauren Neel
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Arnaud Jeanvoine
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Sharon Mc Connell
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Alison Gehred
- Medical Library Division, Nationwide Children's Hospital, Columbus, OH
| | - Nathalie L Maitre
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
24
|
Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E, Zatorre RJ, Kraus N. Evolving perspectives on the sources of the frequency-following response. Nat Commun 2019; 10:5036. [PMID: 31695046 PMCID: PMC6834633 DOI: 10.1038/s41467-019-13003-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
The auditory frequency-following response (FFR) is a non-invasive index of the fidelity of sound encoding in the brain, and is used to study the integrity, plasticity, and behavioral relevance of the neural encoding of sound. In this Perspective, we review recent evidence suggesting that, in humans, the FFR arises from multiple cortical and subcortical sources, not just subcortically as previously believed, and we illustrate how the FFR to complex sounds can enhance the wider field of auditory neuroscience. Far from being of use only to study basic auditory processes, the FFR is an uncommonly multifaceted response yielding a wealth of information, with much yet to be tapped.
Collapse
Affiliation(s)
- Emily B J Coffey
- Department of Psychology, Concordia University, 1455 Boulevard de Maisonneuve Ouest, Montréal, QC, H3G 1M8, Canada.
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), McGill University, 3640 de la Montagne, Montréal, QC, H3G 2A8, Canada.
| | - Trent Nicol
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Bharath Chandrasekaran
- Communication Sciences and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Forbes Tower, 3600 Atwood St, Pittsburgh, PA, 15260, USA
| | - Jennifer Krizman
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, 2 Alethia Drive, Unit 1085, Storrs, CT, 06269, USA
| | - Robert J Zatorre
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada
- Centre for Research on Brain, Language and Music (CRBLM), McGill University, 3640 de la Montagne, Montréal, QC, H3G 2A8, Canada
- Montreal Neurological Institute, McGill University, 3801 rue Université, Montréal, QC, H3A 2B4, Canada
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, 2205 Tech Dr., Evanston, IL, 60208, USA
- Department of Otolaryngology, Northwestern University, 420 E Superior St., Chicago, IL, 6011, USA
| |
Collapse
|
25
|
Krizman J, Kraus N. Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hear Res 2019; 382:107779. [PMID: 31505395 PMCID: PMC6778514 DOI: 10.1016/j.heares.2019.107779] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
The frequency-following response, or FFR, is a neurophysiological response to sound that precisely reflects the ongoing dynamics of sound. It can be used to study the integrity and malleability of neural encoding of sound across the lifespan. Sound processing in the brain can be impaired with pathology and enhanced through expertise. The FFR can index linguistic deprivation, autism, concussion, and reading impairment, and can reflect the impact of enrichment with short-term training, bilingualism, and musicianship. Because of this vast potential, interest in the FFR has grown considerably in the decade since our first tutorial. Despite its widespread adoption, there remains a gap in the current knowledge of its analytical potential. This tutorial aims to bridge this gap. Using recording methods we have employed for the last 20 + years, we have explored many analysis strategies. In this tutorial, we review what we have learned and what we think constitutes the most effective ways of capturing what the FFR can tell us. The tutorial covers FFR components (timing, fundamental frequency, harmonics) and factors that influence FFR (stimulus polarity, response averaging, and stimulus presentation/recording jitter). The spotlight is on FFR analyses, including ways to analyze FFR timing (peaks, autocorrelation, phase consistency, cross-phaseogram), magnitude (RMS, SNR, FFT), and fidelity (stimulus-response correlations, response-to-response correlations and response consistency). The wealth of information contained within an FFR recording brings us closer to understanding how the brain reconstructs our sonic world.
Collapse
Affiliation(s)
- Jennifer Krizman
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA. https://www.brainvolts.northwestern.edu
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
26
|
Alho K, Żarnowiec K, Gorina-Careta N, Escera C. Phonological Task Enhances the Frequency-Following Response to Deviant Task-Irrelevant Speech Sounds. Front Hum Neurosci 2019; 13:245. [PMID: 31379540 PMCID: PMC6646721 DOI: 10.3389/fnhum.2019.00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
In electroencephalography (EEG) measurements, processing of periodic sounds in the ascending auditory pathway generates the frequency-following response (FFR) phase-locked to the fundamental frequency (F0) and its harmonics of a sound. We measured FFRs to the steady-state (vowel) part of syllables /ba/ and /aw/ occurring in binaural rapid streams of speech sounds as frequently repeating standard syllables or as infrequent (p = 0.2) deviant syllables among standard /wa/ syllables. Our aim was to study whether concurrent active phonological processing affects early processing of irrelevant speech sounds reflected by FFRs to these sounds. To this end, during syllable delivery, our healthy adult participants performed tasks involving written letters delivered on a computer screen in a rapid stream. The stream consisted of vowel letters written in red, infrequently occurring consonant letters written in the same color, and infrequently occurring vowel letters written in blue. In the phonological task, the participants were instructed to press a response key to the consonant letters differing phonologically but not in color from the frequently occurring red vowels, whereas in the non-phonological task, they were instructed to respond to the vowel letters written in blue differing only in color from the frequently occurring red vowels. We observed that the phonological task enhanced responses to deviant /ba/ syllables but not responses to deviant /aw/ syllables. This suggests that active phonological task performance may enhance processing of such small changes in irrelevant speech sounds as the 30-ms difference in the initial formant-transition time between the otherwise identical syllables /ba/ and /wa/ used in the present study.
Collapse
Affiliation(s)
- Kimmo Alho
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Paris Descartes University, Paris, France
| | - Katarzyna Żarnowiec
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Natàlia Gorina-Careta
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|