1
|
Lynch KM, Bodison SC, Cabeen RP, Toga AW, Voelker CC. The spatial organization of ascending auditory pathway microstructural maturation from infancy through adolescence using a novel fiber tracking approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597798. [PMID: 38915661 PMCID: PMC11195149 DOI: 10.1101/2024.06.10.597798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Auditory perception is established through experience-dependent stimuli exposure during sensitive developmental periods; however, little is known regarding the structural development of the central auditory pathway in humans. The present study characterized the regional developmental trajectories of the ascending auditory pathway from the brainstem to the auditory cortex from infancy through adolescence using a novel diffusion MRI-based tractography approach and along-tract analyses. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to quantify the magnitude and timing of auditory pathway microstructural maturation. We found spatially varying patterns of white matter maturation along the length of the tract, with inferior brainstem regions developing earlier than thalamocortical projections and left hemisphere tracts developing earlier than the right. These results help to characterize the processes that give rise to functional auditory processing and may provide a baseline for detecting abnormal development.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Stefanie C. Bodison
- Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
2
|
Zanin J, Rance G. Objective Determination of Site-of-Lesion in Auditory Neuropathy. Ear Hear 2024:00003446-990000000-00348. [PMID: 39294863 DOI: 10.1097/aud.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
OBJECTIVE Auditory neuropathy (AN), a complex hearing disorder, presents challenges in diagnosis and management due to limitations of current diagnostic assessment. This study aims to determine whether diffusion-weighted magnetic resonance imaging (MRI) can be used to identify the site and severity of lesions in individuals with AN. METHODS This case-control study included 10 individuals with AN of different etiologies, 7 individuals with neurofibromatosis type 1 (NF1), 5 individuals with cochlear hearing loss, and 37 control participants. Participants were recruited through the University of Melbourne's Neuroaudiology Clinic and the Murdoch Children's Research Institute specialist outpatient clinics. Diffusion-weighted MRI data were collected for all participants and the auditory pathways were evaluated using the fixel-based analysis metric of apparent fiber density. Data on each participant's auditory function were also collected including hearing thresholds, otoacoustic emissions, auditory evoked potentials, and speech-in-noise perceptual ability. RESULTS Analysis of diffusion-weighted MRI showed abnormal white matter fiber density in distinct locations within the auditory system depending on etiology. Compared with controls, individuals with AN due to perinatal oxygen deprivation showed no white matter abnormalities ( p > 0.05), those with a neurodegenerative conditions known/predicted to cause VIII cranial nerve axonopathy showed significantly lower white matter fiber density in the vestibulocochlear nerve ( p < 0.001), while participants with NF1 showed lower white matter fiber density in the auditory brainstem tracts ( p = 0.003). In addition, auditory behavioral measures of speech perception in noise and gap detection were correlated with fiber density results of the VIII nerve. CONCLUSIONS Diffusion-weighted MRI reveals different patterns of anatomical abnormality within the auditory system depending on etiology. This technique has the potential to guide management recommendations for individuals with peripheral and central auditory pathway abnormality.
Collapse
Affiliation(s)
- Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| | - Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, Melbourne, Australia
- The HEARing Cooperative Research Centre, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang Y, Jiang M, Zhu Y, Xue L, Shu W, Li X, Chen H, Li Y, Chen Y, Chai Y, Zhang Y, Chu Y, Song Y, Tao X, Wang Z, Wu H. Impact of inner ear malformation and cochlear nerve deficiency on the development of auditory-language network in children with profound sensorineural hearing loss. eLife 2023; 12:e85983. [PMID: 37697742 PMCID: PMC10497283 DOI: 10.7554/elife.85983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Profound congenital sensorineural hearing loss (SNHL) prevents children from developing spoken language. Cochlear implantation and auditory brainstem implantation can provide partial hearing sensation, but language development outcomes can vary, particularly for patients with inner ear malformations and/or cochlear nerve deficiency (IEM&CND). Currently, the peripheral auditory structure is evaluated through visual inspection of clinical imaging, but this method is insufficient for surgical planning and prognosis. The central auditory pathway is also challenging to examine in vivo due to its delicate subcortical structures. Previous attempts to locate subcortical auditory nuclei using fMRI responses to sounds are not applicable to patients with profound hearing loss as no auditory brainstem responses can be detected in these individuals, making it impossible to capture corresponding blood oxygen signals in fMRI. In this study, we developed a new pipeline for mapping the auditory pathway using structural and diffusional MRI. We used a fixel-based approach to investigate the structural development of the auditory-language network for profound SNHL children with normal peripheral structure and those with IEM&CND under 6 years old. Our findings indicate that the language pathway is more sensitive to peripheral auditory condition than the central auditory pathway, highlighting the importance of early intervention for profound SNHL children to provide timely speech inputs. We also propose a comprehensive pre-surgical evaluation extending from the cochlea to the auditory-language network, showing significant correlations between age, gender, Cn.VIII median contrast value, and the language network with post-implant qualitative outcomes.
Collapse
Affiliation(s)
- Yaoxuan Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuting Zhu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Lu Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Wenying Shu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Xiang Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Hongsai Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Yun Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Ying Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Yongchuan Chai
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Yinghua Chu
- MR Collaboration, Siemens Healthineers LtdShanghaiChina
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers LtdShanghaiChina
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhaoyan Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseasesShanghaiChina
| |
Collapse
|
4
|
Zanin J, Dhollander T, Rance G, Yu L, Lan L, Wang H, Lou X, Connelly A, Nayagam B, Wang Q. Fiber-Specific Changes in White Matter Microstructure in Individuals With X-Linked Auditory Neuropathy. Ear Hear 2021; 41:1703-1714. [PMID: 33136644 DOI: 10.1097/aud.0000000000000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Auditory neuropathy (AN) is the term used to describe a group of hearing disorders, in which the hearing impairment occurs as a result of abnormal auditory nerve function. While our understanding of this condition has advanced significantly over recent years, the ability to determine the site of lesion and the extent of dysfunction in affected individuals remains a challenge. To this end, we investigated potential axonal degeneration in the white matter tracts of the brainstem in individuals with X-linked AN. We hypothesized that individuals with X-linked AN would show focal degeneration within the VIII nerve and/or auditory brainstem tracts, and the degree of degeneration would correlate with the extent of auditory perceptual impairment. DESIGN This was achieved using a higher-order diffusion magnetic resonance imaging (dMRI)-based quantitative measure called apparent fiber density as obtained from a technique called single-shell 3-tissue constrained spherical deconvolution and analyzed with the fixel-based analysis framework. Eleven subjects with genetically confirmed X-linked AN and 11 controls with normal hearing were assessed using behavioral and objective auditory measures. dMRI data were also collected for each participant. RESULTS Fixel-based analysis of the brainstem region showed that subjects with X-linked AN had significantly lower apparent fiber density in the VIII nerve compared with controls, consistent with axonal degeneration in this region. Subsequent analysis of the auditory brainstem tracts specifically showed that degeneration was also significant in these structures overall. The apparent fiber density findings were supported by objective measures of auditory function, such as auditory brainstem responses, electrocochleography, and otoacoustic emissions, which showed VIII nerve activity was severely disrupted in X-linked AN subjects while cochlear sensory hair cell function was relatively unaffected. Moreover, apparent fiber density results were significantly correlated with temporal processing ability (gap detection task) in affected subjects, suggesting that the degree of VIII nerve degeneration may impact the ability to resolve temporal aspects of an acoustic signal. Auditory assessments of sound detection, speech perception, and the processing of binaural cues were also significantly poorer in the X-linked AN group compared with the controls with normal hearing. CONCLUSIONS The results of this study suggest that the dMRI-based measure of apparent fiber density may provide a useful adjunct to existing auditory assessments in the characterization of the site of lesion and extent of dysfunction in individuals with AN. Additionally, the ability to determine the degree of degeneration has the potential to guide rehabilitation strategies in the future.
Collapse
Affiliation(s)
- Julien Zanin
- The HEARing Cooperative Research Centre (HEARing CRC), Melbourne, Victoria, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gary Rance
- The HEARing Cooperative Research Centre (HEARing CRC), Melbourne, Victoria, Australia
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
| | - Lan Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Lan Lan
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Hongyang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army General Hospital 301, Beijing, China
| | - Alan Connelly
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Bryony Nayagam
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, Australia
- These authors contributed equally to this work
| | - Qiuju Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital 301, Beijing, China
- China National Clinical Research Centre for Otolaryngologic Diseases, Chinese People's Liberation Army General Hospital 301, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- These authors contributed equally to this work
| |
Collapse
|
5
|
High Frequency of AIFM1 Variants and Phenotype Progression of Auditory Neuropathy in a Chinese Population. Neural Plast 2020; 2020:5625768. [PMID: 32684920 PMCID: PMC7350177 DOI: 10.1155/2020/5625768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
To decipher the genotype-phenotype correlation of auditory neuropathy (AN) caused by AIFM1 variations, as well as the phenotype progression of these patients, exploring the potential molecular pathogenic mechanism of AN. A total of 36 families of individuals with AN (50 cases) with AIFM1 variations were recruited and identified by Sanger sequencing or next-generation sequencing; the participants included 30 patients from 16 reported families and 20 new cases. We found that AIFM1-positive cases accounted for 18.6% of late-onset AN cases. Of the 50 AN patients with AIFM1 variants, 45 were male and 5 were female. The hotspot variation of this gene was p.Leu344Phe, accounting for 36.1%. A total of 19 AIFM1 variants were reported in this study, including 7 novel ones. A follow-up study was performed on 30 previously reported AIFM1-positive subjects, 16 follow-up cases (53.3%) were included in this study, and follow-up periods were recorded from 1 to 23 years with average 9.75 ± 9.89 years. There was no hearing threshold increase during the short-term follow-up period (1-10 years), but the low-frequency and high-frequency hearing thresholds showed a significant increase with the prolongation of follow-up time. The speech discrimination score progressed gradually and significantly along with the course of the disease and showed a more serious decline, which was disproportionately worse than the pure tone threshold. In addition to the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is also observed in AIFM1-related AN and affects females. In conclusion, we confirmed that AIFM1 is the primary related gene among late-onset AN cases, and the most common recurrent variant is p.Leu344Phe. Except for the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is another probability of AIFM1-related AN, with females affected. Phenotypical features of AIFM1-related AN suggested that auditory dyssynchrony progressively worsened over time.
Collapse
|
6
|
Escabi CD, Frye MD, Trevino M, Lobarinas E. The rat animal model for noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3692. [PMID: 31795685 PMCID: PMC7480078 DOI: 10.1121/1.5132553] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rats make excellent models for the study of medical, biological, genetic, and behavioral phenomena given their adaptability, robustness, survivability, and intelligence. The rat's general anatomy and physiology of the auditory system is similar to that observed in humans, and this has led to their use for investigating the effect of noise overexposure on the mammalian auditory system. The current paper provides a review of the rat model for studying noise-induced hearing loss and highlights advancements that have been made using the rat, particularly as these pertain to noise dose and the hazardous effects of different experimental noise types. In addition to the traditional loss of auditory function following acoustic trauma, recent findings have indicated the rat as a useful model in observing alterations in neuronal processing within the central nervous system following noise injury. Furthermore, the rat provides a second animal model when investigating noise-induced cochlear synaptopathy, as studies examining this in the rat model resemble the general patterns observed in mice. Together, these findings demonstrate the relevance of this animal model for furthering the authors' understanding of the effects of noise on structural, anatomical, physiological, and perceptual aspects of hearing.
Collapse
Affiliation(s)
- Celia D Escabi
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
7
|
Sitek KR, Gulban OF, Calabrese E, Johnson GA, Lage-Castellanos A, Moerel M, Ghosh SS, De Martino F. Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife 2019; 8:e48932. [PMID: 31368891 PMCID: PMC6707786 DOI: 10.7554/elife.48932] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/28/2019] [Indexed: 11/13/2022] Open
Abstract
Studying the human subcortical auditory system non-invasively is challenging due to its small, densely packed structures deep within the brain. Additionally, the elaborate three-dimensional (3-D) structure of the system can be difficult to understand based on currently available 2-D schematics and animal models. Wfe addressed these issues using a combination of histological data, post mortem magnetic resonance imaging (MRI), and in vivo MRI at 7 Tesla. We created anatomical atlases based on state-of-the-art human histology (BigBrain) and postmortem MRI (50 µm). We measured functional MRI (fMRI) responses to natural sounds and demonstrate that the functional localization of subcortical structures is reliable within individual participants who were scanned in two different experiments. Further, a group functional atlas derived from the functional data locates these structures with a median distance below 2 mm. Using diffusion MRI tractography, we revealed structural connectivity maps of the human subcortical auditory pathway both in vivo (1050 µm isotropic resolution) and post mortem (200 µm isotropic resolution). This work captures current MRI capabilities for investigating the human subcortical auditory system, describes challenges that remain, and contributes novel, openly available data, atlases, and tools for researching the human auditory system.
Collapse
Affiliation(s)
- Kevin R Sitek
- Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard UniversityCambridgeUnited States
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| | | | | | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Maastricht Centre for Systems Biology, Faculty of Science and EngineeringMaastricht UniversityMaastrichtNetherlands
| | - Satrajit S Ghosh
- Massachusetts Institute of TechnologyCambridgeUnited States
- Harvard UniversityCambridgeUnited States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|