1
|
Kim JS, Brown CJ. Acoustically Evoked Compound Action Potentials Recorded From Cochlear Implant Users With Preserved Acoustic Hearing. Ear Hear 2023; 44:1061-1077. [PMID: 36882917 PMCID: PMC10440213 DOI: 10.1097/aud.0000000000001350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Less traumatic intracochlear electrode design and the introduction of the soft surgery technique allow for the preservation of low-frequency acoustic hearing in many cochlear implant (CI) users. Recently, new electrophysiologic methods have also been developed that allow acoustically evoked peripheral responses to be measured in vivo from an intracochlear electrode. These recordings provide clues to the status of peripheral auditory structures. Unfortunately, responses generated from the auditory nerve (auditory nerve neurophonic [ANN]) are somewhat difficult to record because they are smaller than the hair cell responses (cochlear microphonic). Additionally, it is difficult to completely segregate the ANN from the cochlear microphonic, complicating the interpretation and limiting clinical applications. The compound action potential (CAP) is a synchronous response of multiple auditory nerve fibers and may provide an alternative to ANN where the status of the auditory nerve is of primary interest. This study is a within-subject comparison of CAPs recorded using traditional stimuli (clicks and 500 Hz tone bursts) and a new stimulus (CAP chirp). We hypothesized that the chirp stimulus might result in a more robust CAP than that recorded using traditional stimuli, allowing for a more accurate assessment of the status of the auditory nerve. DESIGN Nineteen adult Nucleus L24 Hybrid CI users with residual low-frequency hearing participated in this study. CAP responses were recorded from the most apical intracochlear electrode using a 100 μs click, 500 Hz tone bursts, and chirp stimuli presented via the insert phone to the implanted ear. The chirp stimulus used in this study was CAP chirp generated using parameters from human-derived band CAPs ( Chertoff et al. 2010 ). Additionally, nine custom chirps were created by systematically varying the frequency sweep rate of the power function used to construct the standard CAP chirp stimulus. CAPs were recorded using all acoustic stimuli, allowing for within-subject comparisons of the CAP amplitude, threshold, percentage of measurable CAP responses, and waveform morphology. RESULTS Considerable variation in response morphology was apparent across stimuli and stimulation levels. Clicks and CAP chirp significantly evoked identifiable CAP response more compared to 500 Hz tone bursts. At relatively high stimulation levels, the chirp-evoked CAPs were significantly larger in amplitude and less ambiguous in morphology than the click-evoked CAPs. The status of residual acoustic hearing at high frequencies influenced the likelihood that a CAP could be reliably recorded. Subjects with better preserved hearing at high frequencies had significantly larger CAP amplitudes when CAP chirp was used. Customizing the chirp stimulus by varying the frequency sweep rates significantly affected the CAP amplitudes; however, pairwise comparisons did not show significant differences between chirps. CONCLUSIONS CAPs can be measured more effectively using broadband acoustic stimuli than 500 Hz tone bursts in CI users with residual low-frequency acoustic hearing. The advantage of using CAP chirp stimulus relative to standard clicks is dependent on the extent of preserved acoustic hearing at high frequencies and the stimulus level. The chirp stimulus may present an attractive alternative to standard clicks or tone bursts for this CI population when the goal is to record robust CAP responses.
Collapse
Affiliation(s)
- Jeong-Seo Kim
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology – Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Hearing Research Laboratory, Samsung Medical Center, Seoul, South Korea
- Medical Research Institute, Sungkyunkwan University, Suwon, South Korea
| | - Carolyn J. Brown
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
- Department of Otolaryngology – Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Li N, Yan X, Huang W, Chu M, Dong Y, Song H, Peng Y, Shi J, Liu Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem Pharmacol 2023; 212:115575. [PMID: 37334787 DOI: 10.1016/j.bcp.2023.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.
Collapse
Affiliation(s)
- Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiling Huang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Kaynakoğlu B, Ceyhan S. Which stimulus should be used for auditory brainstem response in newborns; CE-Chirp® level specific versus Click stimulus. Int J Pediatr Otorhinolaryngol 2023; 170:111597. [PMID: 37178522 DOI: 10.1016/j.ijporl.2023.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/08/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Auditory Brainstem Response (ABR), the electrical responses in the neuronal pathways extending from the inner ear to the auditory cortex, are evaluated with auditory stimuli. ABR analysis evaluates waves I, III and V's absolute-latencies, amplitude values, interpeak-latencies, interaural-latency differences, and morphologies. This study aims to reveal the advantages of CE-Chirp® LS stimulus and its clinical uses to increase by comparing the amplitude, latency, and interpeak-latency differences of waves I, III, and V at 80 dB nHL and wave V at 60, 40, 20 dB nHL by using click and CE-Chirp® LS stimuli. METHODS 100 (54 boys, 46 girls) infants with normal hearing were included in the National Newborn Hearing Screening Program. With the click and CE-Chirp® LS ABR, the absolute latency and amplitude values of wave V at 20, 40, and 60 dB nHL, and the absolute-latency, interpeak-latency, and amplitude values of waves I, III, and V at 80 dB nHL are determined between stimuli and right-left ear. RESULTS When the wave V latency and amplitudes obtained at 80, 60, 40, and 20 dB nHL levels were examined between genders, and according to the risk factor, no significant difference was found between click and CE-Chirp® LS stimuli (p > 0.05). Waves I, III, and V absolute-latency, amplitudes were compared at 80 dB nHL and wave V absolute-latency, amplitudes at 60, 40, and 20 dB nHL; the amplitudes measured with CE-Chirp® LS were significantly higher than the click stimulus (p < 0.05). When two stimuli were compared for I-III and III-V interpeak-latency values at 80 dB nHL level, no significant difference was found between the two stimuli (p > 0.05). However, the I-V interpeak-latency value was statistically significantly decreased for two stimuli, regardless of the ear (p < 0.05). CONCLUSIONS It is suggested to increase the use of CE-Chirp® LS stimulus with better morphology and amplitude in clinics, believing that it facilitates clinicians' interpretation.
Collapse
Affiliation(s)
- Büşra Kaynakoğlu
- Selçuk University, Health Science Faculty, Department of Audiology, Turkey.
| | - Serkan Ceyhan
- Turkish Ministry of Health, Eskişehir City Hospital, Eskişehir, Turkey.
| |
Collapse
|
4
|
Tan SL, Chen YF, Liu CY, Chu KC, Li PC. Shortened neural conduction time in young adults with tinnitus as revealed by chirp-evoked auditory brainstem response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2178. [PMID: 37092912 DOI: 10.1121/10.0017789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tinnitus is generally considered to be caused by neuroplastic changes in the central nervous system, triggered by a loss of input from the damaged peripheral system; however, conflicting results on auditory brainstem responses (ABRs) to clicks have been reported previously in humans with tinnitus. This study aimed to compare the effect of tinnitus on ABRs to chirps with those to clicks in normal-hearing young adults with tinnitus. The results showed that the tinnitus group had no significantly poorer hearing thresholds (0.25-16 kHz), click-evoked otoacoustic emissions (1-16 kHz), and speech perception in noise (SPIN) than the control group. Although chirps evoked significantly larger wave I and V amplitudes than clicks, people with tinnitus had no significantly smaller wave I amplitudes for either stimulus. Nevertheless, adults with tinnitus exhibited significantly smaller interpeak interval (IPI) between waves I and V for chirps (IPI-chirp) but not for clicks. In addition, the IPI-chirp correlated significantly with the SPIN for individuals with tinnitus when the signal-to-noise ratio was low. The present results suggest that the chirp-evoked ABR may be a valuable clinical tool for objectively assessing the SPIN in individuals with tinnitus. Further studies should be conducted to investigate possible etiologies of tinnitus.
Collapse
Affiliation(s)
- See Ling Tan
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Chieh-Yu Liu
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Kuo-Chung Chu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Number 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Pei-Chun Li
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, Number 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City 25245, Taiwan
| |
Collapse
|
5
|
Alamri Y, Jennings SG. Computational modeling of the human compound action potential. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2376. [PMID: 37092943 PMCID: PMC10119875 DOI: 10.1121/10.0017863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The auditory nerve (AN) compound action potential (CAP) is an important tool for assessing auditory disorders and monitoring the health of the auditory periphery during surgical procedures. The CAP has been mathematically conceptualized as the convolution of a unit response (UR) waveform with the firing rate of a population of AN fibers. Here, an approach for predicting experimentally recorded CAPs in humans is proposed, which involves the use of human-based computational models to simulate AN activity. CAPs elicited by clicks, chirps, and amplitude-modulated carriers were simulated and compared with empirically recorded CAPs from human subjects. In addition, narrowband CAPs derived from noise-masked clicks and tone bursts were simulated. Many morphological, temporal, and spectral aspects of human CAPs were captured by the simulations for all stimuli tested. These findings support the use of model simulations of the human CAP to refine existing human-based models of the auditory periphery, aid in the design and analysis of auditory experiments, and predict the effects of hearing loss, synaptopathy, and other auditory disorders on the human CAP.
Collapse
Affiliation(s)
- Yousef Alamri
- Department of Biomedical Engineering, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| | - Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, 390 South, 1530 East, BEHS 1201, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
de Boer J, Hardy A, Krumbholz K. Could Tailored Chirp Stimuli Benefit Measurement of the Supra-threshold Auditory Brainstem Wave-I Response? J Assoc Res Otolaryngol 2022; 23:787-802. [PMID: 35984541 PMCID: PMC9789297 DOI: 10.1007/s10162-022-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2023] Open
Abstract
Auditory brainstem responses (ABRs) to broadband clicks are strongly affected by dyssynchrony, or "latency dispersion", of their frequency-specific cochlear contributions. Optimized chirp stimuli, designed to compensate for cochlear dispersion, can afford substantial increase in broadband ABR amplitudes, particularly for the prominent wave-V deflection. Reports on the smaller wave I, however, which may be useful for measuring cochlear synaptopathy, have been mixed. This study aimed to test previous claims that ABR latency dispersion differs between waves I and V, and between males and females, and thus that using wave- and/or sex-tailored chirps may provide more reliable wave-I benefit. Using the derived-band technique, we measured responses from frequency-restricted (one-octave-wide) cochlear regions to energy-matched click and chirp stimuli. The derived-band responses' latencies were used to assess any wave- and/or sex-related dispersion differences across bands, and their amplitudes, to evaluate any within-band dispersion differences. Our results suggest that sex-related dispersion difference within the lowest-frequency cochlear regions (< 1 kHz), where dispersion is generally greatest, may be a predominant driver of the often-reported sex difference in broadband ABR amplitude. At the same time, they showed no systematic dispersion difference between waves I and V. Instead, they suggest that reduced chirp benefit on wave I may arise as a result of chirp-induced desynchronization of on- and off-frequency responses generated at the same cochlear places, and resultant reduction in response contributions from higher-frequency cochlear regions, to which wave I is thought to be particularly sensitive.
Collapse
Affiliation(s)
- Jessica de Boer
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- Nottingham Biomedical Research Centre, Queens Medical Centre, Hearing Theme, Nottingham, NG7 2UH UK
| | - Alexander Hardy
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Katrin Krumbholz
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- Nottingham Biomedical Research Centre, Queens Medical Centre, Hearing Theme, Nottingham, NG7 2UH UK
| |
Collapse
|
7
|
Huang H, Chen YF, Hsu CY, Cheng YF, Yang TH. Evaluating auditory brainstem response to a level-dependent chirp designed based on derived-band latencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2688. [PMID: 35461519 DOI: 10.1121/10.0010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The best cochlear-neural delay model for designing a chirp that can produce the largest auditory brainstem response (ABR) has not been established. This study comprised two experiments. Experiment I aimed to estimate the delay model by measuring derived-band ABR latencies at different levels. The results demonstrated that, as the level decreased, the delay between the center frequencies of 0.7 and 5.7 kHz increased. The aim of experiment II was to compare ABRs generated by three stimuli: (1) a level-dependent derived-band (DB)-Chirp, designed based on the model in experiment I; (2) a level-dependent level specific (LS)-Chirp from Kristensen and Elberling [(2012). J. Am. Acad. Audiol. 23, 712-721]; and (3) a click. The results demonstrated that the DB-Chirp produced significantly larger wave V than the LS-Chirp at 45 dB normal hearing level (nHL); however, no differences were observed at other levels. The wave I generated by the DB-Chirp and LS-Chirp were significantly larger than those evoked by the click at 45 and 60 dB nHL and at 30 and 45 dB nHL, respectively; however, at all levels, no differences between these two chirps were observed. The DB-Chirp may be a valuable stimulus for producing ABRs for clinical applications such as assessing cochlear synaptopathy and estimating hearing sensitivity.
Collapse
Affiliation(s)
- Hsuan Huang
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, No. 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Yu-Fu Chen
- Department of Speech-Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, No. 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, No. 365, Mingde Road, Beitou District, Taipei City 112303, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, No. 201, Sector 2, Shipai Road, Beitou District, Taipei City 112201, Taiwan
| | - Tzong-Hann Yang
- Department of Otolaryngology-Head and Neck Surgery, Taipei City Hospital, No. 145, Zhengzhou Road, Datong District, Taipei City 103212, Taiwan
| |
Collapse
|