1
|
Kochervinskii VV, Gradova MA, Gradov OV, Sergeev AI, Lobanov AV, Buryanskaya EL, Ilina TS, Kiselev DA, Malyshkina IA, Kirakosyan GA. Optical and Electrophysical Properties of Vinylidene Fluoride/Hexafluoropropylene Ferroelectric Copolymer Films: Effect of Doping with Porphyrin Derivatives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:564. [PMID: 36770525 PMCID: PMC9920957 DOI: 10.3390/nano13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Polymer films doped by different porphyrins, obtained by crystallization from the acetone solutions, differ in absorption and fluorescence spectra, which we attribute to the differences in the structuring and composition of the rotational isomers in the polymer chains. According to the infrared spectroscopy data, the crystallization of the films doped with tetraphenylporphyrin (TPP) proceeds in a mixture of α- and γ-phases with TGTG- and T3GT3G- conformations, respectively. Three bonds in the planar zigzag conformation ensures the contact of such segments with the active groups of the porphyrin macrocycle, significantly changing its electronic state. Structuring of the films in the presence of TPP leads to an increase in the low-voltage AC-conductivity and the registration of an intense Maxwell-Wagner polarization. An increased conductivity by an order of magnitude in TPP-doped films was also observed at high-voltage polarization. The introduction of TPP during the film formation promotes the displacement of the chemical attachment defects of "head-to-head" type in the monomeric units into the surface. This process is accompanied by a significant increase in the film surface roughness, which was registered by piezo-force microscopy. The latter method also revealed the appearance of hysteresis phenomena during the local piezoelectric coefficient d33 measurements.
Collapse
Affiliation(s)
- Valentin V. Kochervinskii
- Laboratory of Polymer Composite Materials, JSC Scientific Research Institute of Chemical Technology, Moscow 111524, Russia
| | - Margaret A. Gradova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Oleg V. Gradov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey I. Sergeev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anton V. Lobanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeniya L. Buryanskaya
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Laboratory of Physics of Oxide Ferroelectrics, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Tatiana S. Ilina
- Laboratory of Physics of Oxide Ferroelectrics, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Dmitry A. Kiselev
- Laboratory of Physics of Oxide Ferroelectrics, Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Inna A. Malyshkina
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Gayane A. Kirakosyan
- Laboratory of Coordination Chemistry of Alkali and Rare Metals, N.S. Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow 119991, Russia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| |
Collapse
|
2
|
Glymenaki E, Kandyli M, Apostolidou CP, Kokotidou C, Charalambidis G, Nikoloudakis E, Panagiotakis S, Koutserinaki E, Klontza V, Michail P, Charisiadis A, Yannakopoulou K, Mitraki A, Coutsolelos AG. Design and Synthesis of Porphyrin-Nitrilotriacetic Acid Dyads with Potential Applications in Peptide Labeling through Metallochelate Coupling. ACS OMEGA 2022; 7:1803-1818. [PMID: 35071874 PMCID: PMC8771699 DOI: 10.1021/acsomega.1c05013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/30/2021] [Indexed: 05/31/2023]
Abstract
The need to detect and monitor biomolecules, especially within cells, has led to the emerging growth of fluorescent probes. One of the most commonly used labeling techniques for this purpose is reversible metallochelate coupling via a nitrilotriacetic acid (NTA) moiety. In this study, we focus on the synthesis and characterization of three new porphyrin-NTA dyads, TPP-Lys-NTA, TPP-CC-Lys-NTA, and Py 3 P-Lys-NTA composed of a porphyrin derivative covalently connected with a modified nitrilotriacetic acid chelate ligand (NTA), for possible metallochelate coupling with Ni2+ ions and histidine sequences. Emission spectroscopy studies revealed that all of the probes are able to coordinate with Ni2+ ions and consequently can be applied as fluorophores in protein/peptide labeling applications. Using two different histidine-containing peptides as His6-tag mimic, we demonstrated that the porphyrin-NTA hybrids are able to coordinate efficiently with the peptides through the metallochelate coupling process. Moving one step forward, we examined the ability of these porphyrin-peptide complexes to penetrate and accumulate in cancer cells, exploring the potential utilization of our system as anticancer agents.
Collapse
Affiliation(s)
- Eleni Glymenaki
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Maria Kandyli
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Chrysanthi Pinelopi Apostolidou
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Chrysoula Kokotidou
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Georgios Charalambidis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Emmanouil Nikoloudakis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Stylianos Panagiotakis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Aghia Paraskevi, Attiki 15341, Greece
| | - Eleftheria Koutserinaki
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Vithleem Klontza
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Panagiota Michail
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Asterios Charisiadis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Konstantina Yannakopoulou
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Aghia Paraskevi, Attiki 15341, Greece
| | - Anna Mitraki
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Athanassios G. Coutsolelos
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| |
Collapse
|
3
|
Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and Applications of Porphyrin-Biomacromolecule Conjugates. Front Chem 2021; 9:764137. [PMID: 34820357 PMCID: PMC8606752 DOI: 10.3389/fchem.2021.764137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
With potential applications in materials and especially in light-responsive biomedicine that targets cancer tissue selectively, much research has focused on developing covalent conjugation techniques to tether porphyrinoid units to various biomacromolecules. This review details the key synthetic approaches that have been employed in the recent decades to conjugate porphyrinoids with oligonucleotides and peptides/proteins. In addition, we provide succinct discussions on the subsequent applications of such hybrid systems and also give a brief overview of the rapidly progressing field of porphyrin-antibody conjugates. Since nucleic acid and peptide systems vary in structure, connectivity, functional group availability and placement, as well as stability and solubility, tailored synthetic approaches are needed for conjugating to each of these biomacromolecule types. In terms of tethering to ONs, porphyrins are typically attached by employing bioorthogonal chemistry (e.g., using phosphoramidites) that drive solid-phase ON synthesis or by conducting post-synthesis modifications and subsequent reactions (such as amide couplings, hydrazide-carbonyl reactions, and click chemistry). In contrast, peptides and proteins are typically conjugated to porphyrinoids using their native functional groups, especially the thiol and amine side chains. However, bioorthogonal reactions (e.g., Staudinger ligations, and copper or strain promoted alkyne-azide cycloadditions) that utilize de novo introduced functional groups onto peptides/proteins have seen vigorous development, especially for site-specific peptide-porphyrin tethering. While the ON-porphyrin conjugates have largely been explored for programmed nanostructure self-assembly and artificial light-harvesting applications, there are some reports of ON-porphyrin systems targeting clinically translational applications (e.g., antimicrobial biomaterials and site-specific nucleic acid cleavage). Conjugates of porphyrins with proteinaceous moieties, on the other hand, have been predominantly used for therapeutic and diagnostic applications (especially in photodynamic therapy, photodynamic antimicrobial chemotherapy, and photothermal therapy). The advancement of the field of porphyrinoid-bioconjugation chemistry from basic academic research to more clinically targeted applications require continuous fine-tuning in terms of synthetic strategies and hence there will continue to be much exciting work on porphyrinoid-biomacromolecule conjugation.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, New Orleans, LA, United States
| | - Janarthanan Jayawickramarajah
- Department of Chemistry, Tulane University, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|