1
|
Zhu X, Wu S, Zhou Y, Xiao T, Xia L, Wang Y, Xiao A, Guo J, Zhang M, Wen Y, Shang D, Yu L. The pharmacological actions of Danzhi-xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial. J Biomol Struct Dyn 2024; 42:9309-9324. [PMID: 37632305 DOI: 10.1080/07391102.2023.2251067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Danzhi-xiaoyao-San (DZXYS), a Traditional Chinese Medicine, plays an essential role in the clinical treatment of depression, but its mechanisms in humans remain unclear. To investigate its pharmacological effects and mechanisms as an add-on therapy for depression, we conducted a double-blind, placebo-controlled trial with depressed patients receiving selective serotonin reuptake inhibitors (SSRIs). Serum and fecal samples were collected for metabolomic and microbiome analysis using UHPLC-QTRAP-MS/MS and 16S rRNA gene sequencing technologies, respectively. Depression symptoms were assessed using the 24-item Hamilton Depression Scale. We employed network pharmacology, metabolomics, and molecular docking to identify potential targets associated with DZXYS. We also examined the correlation between gut microbes and metabolites to understand how DZXYS affects the microbiota-gut-brain axis. The results showed that DZXYS combined with SSRIs was more effective than SSRIs alone in improving depression. We identified 39 differential metabolites associated with DZXYS treatment and found seven upregulated metabolic pathways. The active ingredients quercetin and luteolin were docked to targets (AVPR2, EGFR, F2, and CDK6) associated with the enriched pathways 'pancreatic cancer' and 'phospholipase D signaling pathway', which included the metabolite lysophosphatidic acid [LPA(0:0/16:0)]. Additionally, we identified 32 differential gut microbiota species related to DZXYS treatment, with Bacteroides coprophilus and Ruminococcus gnavus showing negative correlations with specific metabolites such as L-2-aminobutyric acid and LPA(0:0/16:0). Our findings indicate that DZXYS's antidepressant mechanisms involve multiple targets, pathways, and the regulation of LPA and the microbiota-gut-brain axis. These insights from our systems pharmacology analysis contribute to a better understanding of DZXYS's potential pharmacological mechanisms in depression treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengwei Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufang Zhou
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Xiao
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Liang Xia
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Materia Medica, Beijing, China
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youtian Wang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aixiang Xiao
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Nursing Department, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxiong Guo
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Integrated Chinese and Western Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Zhang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuguan Wen
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dewei Shang
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Yu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
3
|
Jaber M, Kahwaji H, Nasr S, Baz R, Kim YK, Fakhoury M. Precision Medicine in Depression: The Role of Proteomics and Metabolomics in Personalized Treatment Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:359-378. [PMID: 39261438 DOI: 10.1007/978-981-97-4402-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depression, or major depressive disorder (MDD), is a widespread mental health condition marked by enduring feelings of sorrow and loss of interest. Treatment of depression frequently combines psychotherapy, medication, and lifestyle modifications. However, the occurrence of treatment resistance in certain individuals makes it difficult for physicians to effectively manage this disorder, calling for the implementation of alternative therapeutic strategies. Recently, precision medicine has gained increased attention in the field of mental health, paving the way for more personalized and effective therapeutic interventions in depression. Also known as personalized medicine, this approach relies on genetic composition, molecular profiles, and environmental variables to customize therapies to individual patients. In particular, precision medicine has offered novel viewpoints on depression through two specific domains: proteomics and metabolomics. On one hand, proteomics is the thorough study of proteins in a biological system, while metabolomics focuses on analyzing the complete set of metabolites in a living being. In the past few years, progress in research has led to the identification of numerous depression-related biomarkers using proteomics and metabolomics techniques, allowing for early identification, precise diagnosis, and improved clinical outcome. However, despite significant progress in these techniques, further efforts are required for advancing precision medicine in the diagnosis and treatment of depression. The overarching goal of this chapter is to provide the current state of knowledge regarding the use of proteomics and metabolomics in identifying biomarkers related to depression. It also highlights the potential of proteomics and metabolomics in elucidating the intricate processes underlying depression, opening the door for tailored therapies that could eventually enhance clinical outcome in depressed patients. This chapter finally discusses the main challenges in the use of proteomics and metabolomics and discusses potential future research directions.
Collapse
Affiliation(s)
- Mohamad Jaber
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hamza Kahwaji
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sirine Nasr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Reine Baz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
4
|
Requena-Ocaña N, Flores-López M, García-Marchena N, Pavón-Morón FJ, Pedraza C, Wallace A, Castilla-Ortega E, Rodríguez de Fonseca F, Serrano A, Araos P. Plasma Lysophosphatidic Acid Concentrations in Sex Differences and Psychiatric Comorbidity in Patients with Cocaine Use Disorder. Int J Mol Sci 2023; 24:15586. [PMID: 37958570 PMCID: PMC10649657 DOI: 10.3390/ijms242115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
We have recently reported sex differences in the plasma concentrations of lysophosphatidic acid (LPA) and alterations in LPA species in patients with alcohol and cocaine use disorders. Preclinical evidence suggests a main role of lysophosphatidic acid (LPA) signaling in anxiogenic responses and drug addiction. To further explore the potential role of the LPA signaling system in sex differences and psychiatric comorbidity in cocaine use disorder (CUD), we conducted a cross-sectional study with 88 patients diagnosed with CUD in outpatient treatment and 60 healthy controls. Plasma concentrations of total LPA and LPA species (16:0, 18:0, 18:1, 18:2 and 20:4) were quantified and correlated with cortisol and tryptophan metabolites [tryptophan (TRP), serotonin (5-HT), kynurenine (KYN), quinolinic acid (QUIN) and kynurenic acid (KYNA)]. We found sexual dimorphism for the total LPA and most LPA species in the control and CUD groups. The total LPA and LPA species were not altered in CUD patients compared to the controls. There was a significant correlation between 18:2 LPA and age at CUD diagnosis (years) in the total sample, but total LPA, 16:0 LPA and 18:2 LPA correlated with age at onset of CUD in male patients. Women with CUD had more comorbid anxiety and eating disorders, whereas men had more cannabis use disorders. Total LPA, 18:0 LPA and 20:4 LPA were significantly decreased in CUD patients with anxiety disorders. Both 20:4 LPA and total LPA were significantly higher in women without anxiety disorders compared to men with and without anxiety disorders. Total LPA and 16:0 LPA were significantly decreased in CUD patients with childhood ADHD. Both 18:1 LPA and 20:4 LPA were significantly augmented in CUD patients with personality disorders. KYNA significantly correlated with total LPA, 16:0 LPA and 18:2 LPA species, while TRP correlated with the 18:1 LPA species. Our results demonstrate that LPA signaling is affected by sex and psychiatric comorbidity in CUD patients, playing an essential role in mediating their anxiety symptoms.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - María Flores-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Nuria García-Marchena
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Francisco J. Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de la Victoria de Málaga, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Agustín Wallace
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Pedro Araos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; (N.R.-O.); (M.F.-L.); (F.J.P.-M.); (C.P.); (P.A.)
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, 29010 Málaga, Spain; (A.W.); (E.C.-O.)
| |
Collapse
|
5
|
Omori W, Kano K, Hattori K, Kajitani N, Okada-Tsuchioka M, Boku S, Kunugi H, Aoki J, Takebayashi M. Reduced Cerebrospinal Fluid Levels of Lysophosphatidic Acid Docosahexaenoic Acid in Patients With Major Depressive Disorder and Schizophrenia. Int J Neuropsychopharmacol 2021; 24:948-955. [PMID: 34214158 PMCID: PMC8653873 DOI: 10.1093/ijnp/pyab044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is involved in numerous biological processes, including neurodevelopment, chronic inflammation, and immunologic response in the central nervous system. Autotaxin (ATX) is a secreted enzyme that produces LPA from lysophosphatidylcholine (LPC). Previous studies have demonstrated decreased protein levels of ATX in cerebrospinal fluid (CSF) of patients with major depressive disorder (MDD). Based on those studies, the current study investigated the levels of lysophospholipids species including LPA and related metabolic enzymes, in CSF of patients with MDD and schizophrenia (SCZ). METHODS The levels of lysophospholipids species and related metabolic enzymes were measured with either liquid chromatography-tandem mass spectrometry or enzyme-linked immunosorbent assay. Japanese patients were diagnosed with DSM-IV-TR. CSF was obtained from age- and sex-matched healthy controls (n = 27) and patients with MDD (n = 26) and SCZ (n = 27). RESULTS Of all lysophospholipids species, the levels of LPA 22:6 (LPA - docosahexaenoic acid) were significantly lower in patients with MDD and SCZ than in healthy controls. These levels were negatively correlated with several clinical symptomatic scores of MDD, but not those of SCZ. In addition, the levels of LPA 22:6 were significantly correlated with the levels of LPC 22:6 among all 3 groups. On the other hand, the levels of LPA 22:6 were not correlated with ATX activity in patients with MDD and SCZ. CONCLUSION The lower levels of LPA 22:6 in patients with MDD and SCZ suggest an abnormality of LPA 22:6 metabolism. In addition, several depressive symptoms in patients with MDD were significantly associated with the lower levels of LPA 22:6, suggesting an involvement of LPA 22:6 in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan,Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan,Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan,Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan,Correspondence: Minoru Takebayashi, MD, PhD, Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto 860–8556, Japan ()
| |
Collapse
|
6
|
Zhai G, Liang W, Xu Y. High Expression of Lysophosphatidic Acid Induces Nerve Injury in LSS Patients via AKT Mediated NF-κB p65 Pathway. Front Pharmacol 2021; 12:641435. [PMID: 33815123 PMCID: PMC8012901 DOI: 10.3389/fphar.2021.641435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Lumbar spinal stenosis (LSS) is a spinal degenerative disease, complicated with nerve injury. Lysophosphatidic acid (LPA), a kind of glycerophospholipid molecule is elevated in the initial stages of neural injury. This research aimed to investigate the patho-mechanism of nerve injury caused by LPA in LSS patients. Twenty-five LSS patients and fifteen idiopathic scoliosis patients (without neurological symptoms) were recruited from Xianyang Central Hospital of Shanxi Province. We measured the concentration of LPA in cerebrospinal fluid samples of all subjects. Different concentrations (0.1, 1, and 10 mol/L) of LPA were used to stimulate Rat Neurons-spinal cord (RN-SC) cells. The effects of LPA on cell injury was detected by MTT and LDH (lactate dehydrogenase) assay. Cell apoptosis was determined by FCM (flow cytometry) and TUNEL staining. The changes in the expression of key proteins involved in Akt mediated NF-κB p65 pathway intervened by LPA were determined by western blot. RN-SC cells were pretreated with JSH-23 (NF-κB inhibitor) before LPA exposure, followed by cell apoptosis measurement. The concentration of LPA in LSS patients was notably higher than that in control patients (p < 0.01). The level of LPA was positively correlated with the severity of LSS. LPA treatment induced RN-SC cells displaying oval or rounded cell body with degenerated protrusion dose dependently. In addition, LPA decreased RN-SC cell viability and promoted cell apoptosis in a dose-dependent manner. LPA initiated Akt phosphorylation, IKB phosphorylation, and NF-κB nuclear translocation in a dose-dependent manner. However, JSH-23 (NF-κB inhibitor) pre-treatment prevented effects of LPA. The high levels of LPA induced nerve injury by reducing the viability of RN-SC cells and promoted cell apoptosis through Akt mediated NF-κB p65 signaling pathway. LPA might be a new therapeutic target for relieving nerve injury in LSS patients.
Collapse
Affiliation(s)
- Guiliang Zhai
- Orthopedic Surgery, Binzhou Central Hospital of Shandong Province, Binzhou, China
| | - Wenfei Liang
- Department of Stomatology, Binzhou Central Hospital of Shandong Province, Binzhou, ,China
| | - Yongjun Xu
- Xianyang Central Hospital of Shaanxi Province, Xianyang, China
| |
Collapse
|
7
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
8
|
Riya S, Sultana S, Daria S, Proma MA, Bhuiyan MA, Haque MA, Islam MR. Evaluation of Serum Lysophosphatidic Acid and Lysophosphatidylcholine Levels in Major Depressive Disorder Patients. Cureus 2020; 12:e12388. [PMID: 33542861 PMCID: PMC7849208 DOI: 10.7759/cureus.12388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Major depressive disorder (MDD) is a heterogeneous condition featured with a continuous low mood, feeling of sadness, lack of interest to perform daily activities. Genetic, physiological, biological, social, and environmental factors are associated with the pathophysiology of depression. Though several human studies failed to identify the suitable biological markers for depression, some animal studies showed phospholipids play a vital role in the alteration of emotion. Thus, the current study aimed to measure the serum levels of lysophosphatidic acid (LPA) and lysophosphatidylcholine (LPC) in MDD patients and healthy controls (HCs) to explore their roles and relationship with depression. Methods This case-control study enrolled 53 MDD patients and 50 HCs matched by age, gender, and body mass index. Based on the diagnostic and statistical manual of mental disorders, 5th edition, a qualified psychiatrist diagnosed patients and assessed HCs. We applied the Hamilton depression rating scale (Ham-D) to measure the severity of depression. We used enzyme-linked immunosorbent assay kits to measure serum lysophosphatidic acid and lysophosphatidylcholine levels. Results We found no alterations of these parameters in serum levels of MDD patients compared to HCs. We also observed a significant positive correlation between LPA and LPC levels in MDD patients. Moreover, the present study showed no significant associations between target markers and either diagnosis of depression or Ham-D scores, or management of depression. Conclusion The present study suggests that LPA and LPC levels probably would not serve as potential biomarkers of MDD. Thus, we recommend further studies with large and more homogeneous populations to explore the exact relationship between serum lipids and MDD.
Collapse
Affiliation(s)
- Sumaia Riya
- Department of Pharmacy, University of Asia Pacific, Dhaka, BGD
| | - Sharmin Sultana
- Department of Pharmacy, University of Asia Pacific, Dhaka, BGD
| | - Sohel Daria
- Department of Pharmacy, University of Asia Pacific, Dhaka, BGD
| | - Maliha A Proma
- Department of Pharmacy, University of Asia Pacific, Dhaka, BGD
| | | | | | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, BGD
| |
Collapse
|
9
|
Kim DG, Kim HJ, Choi SH, Nam SM, Kim HC, Rhim H, Cho IH, Rhee MH, Nah SY. Gintonin influences the morphology and motility of adult brain neurons via LPA receptors. J Ginseng Res 2020; 45:401-407. [PMID: 34025133 PMCID: PMC8134845 DOI: 10.1016/j.jgr.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/30/2020] [Indexed: 11/02/2022] Open
Abstract
Background Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. Materials and methods We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. Results We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. Conclusion The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration.
Collapse
Key Words
- Adult brain neuron
- BBB, blood brain barrier
- BSA, bovine serum albumin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- EGF, epidermal growth factor
- FITC, fluorescein isothiocyanate
- Gintonin
- HBSS, Hanks' Balanced Salt Solution
- LPA receptors
- LPA, Lysophatidic Acid
- MEM, Modified Eagle's medium
- Morphology and migration
- NECAB1, Neuronal calcium binding proteins 1
- NFH, neurofilament H
- OCT, optimum cutting temperature
- PFA, paraformaldehyde
- ROCK, Rho-associated protein kinase
- bFGF, fibroblast growth factor
- hNPC, hippocampal neural precursor cells
Collapse
Affiliation(s)
- Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Cheomdanro 61, Daegu, Republic of Korea.,Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan, Republic of Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|