1
|
Orleanska J, Krol W, Majzner K. Assessing endothelial cytotoxicity induced by tyrosine kinase inhibitors: insights from Raman and fluorescence imaging. Analyst 2025. [PMID: 39757915 DOI: 10.1039/d4an01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Since their approval, tyrosine kinase inhibitors (TKIs) have been widely used in antitumor therapy for chronic myeloblastic leukemia. Despite being approved by the FDA in 2001 to treat a rare cancer called chronic myeloid leukemia (CML), imatinib and other TKIs remain subjects of research for several reasons, such as their long-term effects, resistance, or molecular mechanisms. This study uses Raman and fluorescence imaging to investigate the in vitro cytotoxic effects of two TKIs, imatinib and dasatinib, on human aortic endothelial cells (HAECs). A comprehensive range of concentrations for these TKIs was applied to assess their cytotoxic impact based on viability, inflammation, and biochemical profile. Detailed data analysis revealed alterations in the biochemical profiles of cellular components, even though the viability of HAECs was around 80-90%. These changes indicate that, despite the cells retaining viability, they are experiencing considerable sub-lethal stress. Specifically, cells exposed to clinically relevant TKI concentrations showed increased signals from proteins and saturated lipids alongside decreased signals from nucleic acids, cytochromes, and unsaturated lipids. The subcellular analysis highlighted prominent changes in the perinuclear area, dominated by the endoplasmic reticulum and the cytoplasm. These findings suggest that TKIs are cytotoxic to vascular endothelium at concentrations close to those that are clinically observed. The predominant mechanism appears to involve oxidative stress-mediated inflammation, as evidenced by increased lipid content in treated cells and ICAM-1 staining. This cytotoxicity may contribute to the cardiotoxic effects observed during TKI therapy.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Lojasiewicza St 11, 30-348 Krakow, Poland
| | - Weronika Krol
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Ayalew ZS, Azibte GT, Tadesse F, Legesse BA, Kiflu ZG, Weldeamanuel MT, Tsige KA, Molla BA, Ejigu AM. Unveiling the nephrotoxic profile of BCR-ABL tyrosine kinase inhibitors: A real-world experience in Africa. EJHAEM 2024; 5:749-756. [PMID: 39157623 PMCID: PMC11327723 DOI: 10.1002/jha2.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
Introduction The efficacy of BCR-ABL tyrosine kinase inhibitors (TKIs) in treating chronic myelogenous leukemia and other malignancies is well-documented. However, concerns about potential nephrotoxicity have raised questions. This study, conducted at Tikur Anbesa Specialized Hospital (TASH) in Addis Ababa, Ethiopia, aimed to investigate the association between TKIs and renal toxicities. Methods A hospital-based cross-sectional design was used to enroll 260 TASH patients actively receiving BCR-ABL TKIs. Demographic information, diagnoses, treatment details, and laboratory test results were collected for each participant's Electronic Medical Record. The primary goal was to assess adverse renal events, a combination of events of a decrease in estimated glomerular filtration rate (eGFR) exceeding 30% from baseline, significant proteinuria, and a diagnosis of acute kidney injury (AKI) or chronic kidney disease (CKD). A logistic regression model was used to analyze the data and identify factors associated with developing adverse renal events. Results Our analysis revealed a statistically significant decrease in eGFR following treatment with TKIs. However, the observed rate of adverse renal events (13.1%) was lower than reported in some previous studies. Factors significantly associated with adverse renal events included longer TKI duration, male sex (protective), hypertension, HIV infection, and achieving complete molecular remission and/or a complete hematologic response. No significant associations were found with diabetes mellitus, age, angiotensin-converting enzyme inhibitors use, or baseline creatinine level. Conclusions While this study found that BCR-ABL TKIs can lead to a decline in eGFR, AKI, and CKD, it also demonstrated that they were relatively safer in our study population.
Collapse
Affiliation(s)
| | | | - Fisihatsion Tadesse
- Department of Internal Medicine, Division of HematologyAddis Ababa UniversityAddis AbabaEthiopia
| | | | | | | | | | | | - Addisu Melkie Ejigu
- Department of Internal Medicine, Division of NephrologyAddis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
3
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
4
|
Niknahad H, Mobasheri A, Arjmand A, Rafiei E, Alidaee S, Razavi H, Bagheri S, Rezaei H, Sabouri S, Najibi A, Khodaei F, Kashani SMA, Ommati MM, Heidari R. Hepatic encephalopathy complications are diminished by piracetam via the interaction between mitochondrial function, oxidative stress, inflammatory response, and locomotor activity. Heliyon 2023; 9:e20557. [PMID: 37810869 PMCID: PMC10551565 DOI: 10.1016/j.heliyon.2023.e20557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background of the study: Hepatic encephalopathy (HE) is a complication in which brain ammonia (NH4+) levels reach critically high concentrations because of liver failure. HE could lead to a range of neurological complications from locomotor and behavioral disturbances to coma. Several tactics have been established for subsiding blood and brain NH4+. However, there is no precise intervention to mitigate the direct neurological complications of NH4+. Purpose It has been found that oxidative stress, mitochondrial damage, and neuro-inflammation play a fundamental role in NH4+ neurotoxicity. Piracetam is a drug used clinically in neurological complications such as stroke and head trauma. Piracetam could significantly diminish oxidative stress and improve brain mitochondrial function. Research methods In the current study, piracetam (100 and 500 mg/kg, oral) was used in a mice model of HE induced by thioacetamide (TA, 800 mg/kg, single dose, i.p). Results Significant disturbances in animals' locomotor activity, along with increased oxidative stress biomarkers, including reactive oxygen species formation, protein carbonylation, lipid peroxidation, depleted tissue glutathione, and decreased antioxidant capacity, were evident in the brain of TA-treated mice. Meanwhile, mitochondrial permeabilization, mitochondrial depolarization, suppression of dehydrogenases activity, and decreased ATP levels were found in the brain of the TA group. The level of pro-inflammatory cytokines was also significantly high in the brain of HE animals. Conclusion It was found that piracetam significantly enhanced mice's locomotor activity, blunted oxidative stress biomarkers, decreased inflammatory cytokines, and improved mitochondrial indices in hyperammonemic mice. These data suggest piracetam as a neuroprotective agent which could be repurposed for the management of HE.
Collapse
Affiliation(s)
- Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, And Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland
- University Medical Center Utrecht, Departments of Orthopedics Rheumatology and Clinical Immunology, 3508, GA, Utrecht, the Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Razavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohammad Amin Kashani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Taurine Improves Sperm Mitochondrial Indices, Blunts Oxidative Stress Parameters, and Enhances Steroidogenesis and Kinematics of Sperm in Lead-Exposed Mice. Reprod Sci 2022; 30:1891-1910. [DOI: 10.1007/s43032-022-01140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
|
6
|
Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol 2022; 8:195-210. [PMID: 36685263 PMCID: PMC9850306 DOI: 10.5114/ceh.2022.119216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.
Collapse
Affiliation(s)
- Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Feng Yan
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Yanqin Ma
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Dongmei Xu
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Zhongwei Tang
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, Mousavi K, Khalvati B, Zhao Y, Sun J, Zong Y, Ommati MM, Heidari R. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett 2021; 349:12-29. [PMID: 34089816 DOI: 10.1016/j.toxlet.2021.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- β, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Asrin Ahmadi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Jianyu Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yuqi Zong
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Prenggono MD, Yasmina A, Ariyah M, Wanahari TA, Hasrianti N. The effect of imatinib and nilotinib on blood calcium and blood potassium levels in chronic myeloid leukemia patients: a literature review. Oncol Rev 2021; 15:547. [PMID: 34976304 PMCID: PMC8649642 DOI: 10.4081/oncol.2021.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Imatinib and nilotinib are first-line treatments for chronic myeloid leukemia (CML) patients, which act specifically against target cells. However, these drugs may cause side effects, such as electrolyte disturbances. This literature review aimed to provide a comparison of the effects of imatinib and nilotinib on blood potassium and calcium levels. It also summarized their hypothetical mechanism. A comprehensive electronic search of the different databases was conducted using ‘chronic myeloid leukemia’, ‘tyrosine kinase inhibitors’, ‘imatinib’, ‘nilotinib’, ‘potassium’, ‘calcium’, ‘electrolytes’ as keywords. This review used PubMed- MEDLINE, Cochrane Library, and Google Scholar as the source databases. Sixteen articles published from 2006 to 2020 were reviewed. Changes in blood potassium levels range from increased to decreased levels, while changes in blood calcium levels range from the lower normal values to below normal values (hypocalcemia). Tyrosine kinase inhibitors (TKIs), including imatinib and nilotinib, have a non-specific target, namely plateletderived growth factor receptor (PDGFR), which indirectly affects blood potassium and calcium levels in CML patients. The clinical manifestations of these changes vary from being visible only in laboratory tests to displaying a variety of clinical signs and symptoms.
Collapse
Affiliation(s)
- Muhammad Darwin Prenggono
- Division of Medical Oncology-Hematology, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin General Hospital, Banjarmasin
| | - Alfi Yasmina
- Department of Pharmacology, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin
| | - Misna Ariyah
- Medical Education Study Program, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin
| | - Tenri Ashari Wanahari
- Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin General Hospital, Banjarmasin, Indonesia
| | - Nuvita Hasrianti
- Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin General Hospital, Banjarmasin, Indonesia
| |
Collapse
|
9
|
Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100049. [PMID: 34909675 PMCID: PMC8663991 DOI: 10.1016/j.crphar.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.
Collapse
Affiliation(s)
- Khadijah Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhipeng Jia
- College of Animal Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Najafi H, Abolmaali SS, Heidari R, Valizadeh H, Jafari M, Tamaddon AM, Azarpira N. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J Control Release 2021; 337:1-13. [PMID: 34271033 DOI: 10.1016/j.jconrel.2021.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/16/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is responsible for significant mortality and morbidity during renal procedures. Nitric oxide (NO) deficiency is known to play a crucial role in renal I/R injury; however, low stability and severe toxicity of high concentrations of NO have limited its applications. Herein, we developed an in-situ forming Fmoc-dipheylalanine hydrogel releasing s-nitroso-n-acetylpenicillamine (FmocFF-SNAP) for renal I/R injury. Fmoc-FF hydrogel comprising of β-sheet nanofibers was prepared through the pH-titration method. It was then characterized by electron microscopy, pyrene assay, and circular dichroism techniques. Mechanical properties of Fmoc-FF hydrogel (thixotropy and syringeability) were investigated by oscillatory rheology and texture analysis. To assess the therapeutic efficiency in the renal I/R injury model, expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) was measured in various samples (different concentrations of free SNAP and FmocFF-SNAP, unloaded Fmoc-FF, and sham control) by real-time RT-PCR, ROS production, serum biomarkers, and histopathological evaluations. According to the results, Fmoc-FF self-assembly in physiologic conditions led to the formation of an entangled nanofibrous and shear-thinning hydrogel. FmocFF-SNAP exhibited a sustained NO release over 7 days in a concentration-dependent manner. Importantly, intralesional injection of FmocFF-SNAP caused superior recovery of renal I/R injury when compared to free SNAP in terms of histopathological scores and renal function indices (e.g. serum creatinine, and blood urea nitrogen). Compared to the I/R control group, biomarkers of oxidative stress and iNOS expression were significantly reduced possibly due to the sustained release of NO. Interestingly, the eNOS expression showed a significant enhancement reflecting the regeneration of the injured endothelial tissue. Thus, the novel FmocFF-SNAP can be recommended for the alleviation of renal I/R injury.
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Hadi Valizadeh
- Pharmaceutics Department, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-allah Research Tower, Shiraz 7193711351, Iran.
| |
Collapse
|
11
|
Ommati MM, Mobasheri A, Heidari R. Drug-induced organ injury in coronavirus disease 2019 pharmacotherapy: Mechanisms and challenges in differential diagnosis and potential protective strategies. J Biochem Mol Toxicol 2021; 35:e22795. [PMID: 33973313 PMCID: PMC8237057 DOI: 10.1002/jbt.22795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The world is currently facing an unprecedented pandemic caused by a newly recognized and highly pathogenic coronavirus disease 2019 (COVID-19; induced by SARS-CoV-2 virus), which is a severe and ongoing threat to global public health. Since COVID-19 was officially declared a pandemic by the World Health Organization in March 2020, several drug regimens have rapidly undergone clinical trials for the management of COVID-19. However, one of the major issues is drug-induced organ injury, which is a prominent clinical challenge. Unfortunately, most drugs used against COVID-19 are associated with adverse effects in different organs, such as the kidney, heart, and liver. These side effects are dangerous and, in some cases, they can be lethal. More importantly, organ injury is also a clinical manifestation of COVID-19 infection. These adverse reactions are increasingly recognized as outcomes of COVID-19 infection. Therefore, the differential diagnosis of drug-induced adverse effects from COVID-19-induced organ injury is a clinical complication. This review highlights the importance of drug-induced organ injury, its known mechanisms, and the potential therapeutic strategies in COVID-19 pharmacotherapy. We review the potential strategies for the differential diagnosis of drug-induced organ injury. This information can facilitate the development of therapeutic strategies, not only against COVID-19 but also for future outbreaks of other emerging infectious diseases.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life SciencesShanxi Agricultural UniversityTaiguChina
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland
- Department of Regenerative MedicineState Research Institute Centre for Innovative MedicineVilniusLithuania
- Departments of Orthopedics, Rheumatology and Clinical ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Joint SurgerySun Yat‐sen UniversityGuangzhouChina
| | - Reza Heidari
- Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
12
|
Chen J, Dou P, Xiao H, Dou D, Han X, Kuang H. Application of Proteomics and Metabonomics to Reveal the Molecular Basis of Atractylodis Macrocephalae Rhizome for Ameliorating Hypothyroidism Instead of Hyperthyroidism. Front Pharmacol 2021; 12:664319. [PMID: 33959028 PMCID: PMC8095350 DOI: 10.3389/fphar.2021.664319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
As the treatments of diseases with Chinese herbs are holistic and characterized by multiple components, pathways, and targets, elucidating the efficacy of Chinese herbs in treating diseases, and their molecular basis, requires a comprehensive, network-based approach. In this study, we used a network pharmacology strategy, as well as in vivo proteomics and metabonomics, to reveal the molecular basis by which Atractylodis macrocephalae rhizome (AMR) ameliorates hypothyroidism. Eighteen main compounds from AMR and its fractions (volatile oil fraction, crude polysaccharides fraction, lactones fraction, oligosaccharide fraction, and atractyloside fraction) were identified by HPLC, and their targets were screened using the TCMSP database and Swiss Target Prediction. Disease targets were gathered from the TTD, CTD and TCMSP databases. Hub targets were screened by different plug-ins, such as Bisogene, Merge, and CytoNCA, in Cytoscape 3.7.1 software and analyzed for pathways by the DAVID database. Hypothyroidism and hyperthyroidism pharmacological models were established through systems pharmacology based on proteomic and metabolomic techniques. Finally, AMR and its fractions were able to ameliorate the hypothyroidism model to different degrees, whereas no significant improvements were noted in the hyperthyroidism model. The lactones fraction and the crude polysaccharides fraction were considered the most important components of AMR for ameliorating hypothyroidism. These amelioration effects were achieved through promoting substance and energy metabolism. In sum, the integrative approach used in this study demonstrates how network pharmacology, proteomics, and metabolomics can be used effectively to elucidate the efficacy, molecular basis, and mechanism of action of medicines used in TCM.
Collapse
Affiliation(s)
- Jing Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China.,Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Peiyuan Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Hang Xiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Xueying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Da Lian, China
| | - Haixue Kuang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Ommati MM, Arabnezhad MR, Farshad O, Jamshidzadeh A, Niknahad H, Retana-Marquez S, Jia Z, Nateghahmadi MH, Mousavi K, Arazi A, Azmoon MR, Azarpira N, Heidari R. The Role of Mitochondrial Impairment and Oxidative Stress in the Pathogenesis of Lithium-Induced Reproductive Toxicity in Male Mice. Front Vet Sci 2021; 8:603262. [PMID: 33842567 PMCID: PMC8025583 DOI: 10.3389/fvets.2021.603262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li+) is prescribed against a wide range of neurological disorders. Besides its excellent therapeutic properties, there are several adverse effects associated with Li+. The impact of Li+ on renal function and diabetes insipidus is the most common adverse effect of this drug. On the other hand, infertility and decreased libido is another complication associated with Li+. It has been found that sperm indices of functionality, as well as libido, is significantly reduced in Li+-treated men. These adverse effects might lead to drug incompliance and the cessation of drug therapy. Hence, the main aims of the current study were to illustrate the mechanisms of adverse effects of Li+ on the testis tissue, spermatogenesis process, and hormonal changes in two experimental models. In the in vitro experiments, Leydig cells (LCs) were isolated from healthy mice, cultured, and exposed to increasing concentrations of Li+ (0, 10, 50, and 100 ppm). In the in vivo section of the current study, mice were treated with Li+ (0, 10, 50, and 100 ppm, in drinking water) for five consecutive weeks. Testis and sperm samples were collected and assessed. A significant sign of cytotoxicity (LDH release and MTT assay), along with disrupted testosterone biosynthesis, impaired mitochondrial indices (ATP level and mitochondrial depolarization), and increased biomarkers of oxidative stress were detected in LCs exposed to Li+. On the other hand, a significant increase in serum and testis Li+ levels were detected in drug-treated mice. Moreover, ROS formation, LPO, protein carbonylation, and increased oxidized glutathione (GSSG) were detected in both testis tissue and sperm specimens of Li+-treated mice. Several sperm anomalies were also detected in Li+-treated animals. On the other hand, sperm mitochondrial indices (mitochondrial dehydrogenases activity and ATP levels) were significantly decreased in drug-treated groups where mitochondrial depolarization was increased dose-dependently. Altogether, these data mention oxidative stress and mitochondrial impairment as pivotal mechanisms involved in Li+-induced reproductive toxicity. Therefore, based on our previous publications in this area, therapeutic options, including compounds with high antioxidant properties that target these points might find a clinical value in ameliorating Li+-induced adverse effects on the male reproductive system.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mohammad Reza Arabnezhad
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Socorro Retana-Marquez
- Department of Biology and Reproduction, Autonomous Metropolitan University, Mexico City, Mexico
| | - Zhipeng Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | | | - Khadijeh Mousavi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aysooda Arazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Azmoon
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Abdoli N, Sadeghian I, Azarpira N, Ommati MM, Heidari R. Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp Hepatol 2021; 7:30-40. [PMID: 34027113 PMCID: PMC8122090 DOI: 10.5114/ceh.2021.104675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
AIM OF THE STUDY Cholestasis is a serious complication affecting other organs such as the liver and kidney. Oxidative stress and mitochondrial impairment are proposed as the primary mechanisms for cholestasis-induced organ injury. Taurine (TAU) is the most abundant free amino acid in the human body, which is not incorporated in the structure of proteins. Several pharmacological effects have been attributed to TAU. It has been reported that TAU effectively mitigated oxidative stress and modulated mitochondrial function. The current study aimed to evaluate the impact of TAU on oxidative stress biomarkers and mitochondrial parameters in the kidney of cholestatic animals. MATERIAL AND METHODS Bile duct ligated (BDL) rats were used as an antioxidant model of cholestasis. Animals were treated with TAU (500 and 1000 mg/kg, oral) for seven consecutive days. Animals were anesthetized (thiopental 80 mg/kg, i.p.), and kidney and blood specimens were collected. RESULTS Severe elevation in serum and urine biomarkers of renal injury was evident in the BDL group. Significant lipid peroxidation, reactive oxygen species (ROS) formation, and protein carbonylation were detected in the kidney of BDL animals. Furthermore, depleted glutathione reservoirs and a significant decrease in the antioxidant capacity of renal tissue were detected in cholestatic rats. Renal tubular atrophy and interstitial inflammation were evident in BDL animals. Cholestasis also caused significant mitochondrial dysfunction in the kidney. TAU significantly prevented cholestasis-induced renal injury by inhibiting oxidative stress and mitochondrial impairment. CONCLUSIONS These data indicate TAU as a potential therapeutic agent in the management of cholestasis-induced renal injury.
Collapse
Affiliation(s)
- Narges Abdoli
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Zhao P, Peng Y, Xu X, Wang Z, Wu Z, Li W, Tang Y, Liu G. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods. J Appl Toxicol 2021; 41:1518-1526. [PMID: 33469990 DOI: 10.1002/jat.4141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria are important organelles in human cells, providing more than 95% of the energy. However, some drugs and environmental chemicals could induce mitochondrial dysfunction, which might cause complex diseases and even worsen the condition of patients with mitochondrial damage. Some drugs have been withdrawn from the market due to their severe mitochondrial toxicity, such as troglitazone. Therefore, there is an urgent need to develop models that could accurately predict the mitochondrial toxicity of chemicals. In this paper, suitable data were obtained from literature and databases first. Then nine types of fingerprints were used to characterize these compounds. Finally, different algorithms were used to build models. Meanwhile, the applicability domain of the prediction models was defined. We have also explored the structural alerts of mitochondrial toxicity, which would be helpful for medicinal chemists to better predict mitochondrial toxicity and further optimize lead compounds.
Collapse
Affiliation(s)
- Piaopiao Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yayuan Peng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xuan Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhiyuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Are antibacterial effects of non-antibiotic drugs random or purposeful because of a common evolutionary origin of bacterial and mammalian targets? Infection 2020; 49:569-589. [PMID: 33325009 PMCID: PMC7737717 DOI: 10.1007/s15010-020-01547-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
Purpose Advances in structural biology, genetics, bioinformatics, etc. resulted in the availability of an enormous pool of information enabling the analysis of the ancestry of pro- and eukaryotic genes and proteins. Methods This review summarizes findings of structural and/or functional homologies of pro- and eukaryotic enzymes catalysing analogous biological reactions because of their highly conserved active centres so that non-antibiotics interacted with bacterial targets. Results Protease inhibitors such as staurosporine or camostat inhibited bacterial serine/threonine or serine/tyrosine protein kinases, serine/threonine phosphatases, and serine/threonine kinases, to which penicillin-binding-proteins are linked, so that these drugs synergized with β-lactams, reverted aminoglycoside-resistance and attenuated bacterial virulence. Calcium antagonists such as nitrendipine or verapamil blocked not only prokaryotic ion channels but interacted with negatively charged bacterial cell membranes thus disrupting membrane energetics and inducing membrane stress response resulting in inhibition of P-glycoprotein such as bacterial pumps thus improving anti-mycobacterial activities of rifampicin, tetracycline, fluoroquinolones, bedaquilin and imipenem-activity against Acinetobacter spp. Ciclosporine and tacrolimus attenuated bacterial virulence. ACE-inhibitors like captopril interacted with metallo-β-lactamases thus reverting carbapenem-resistance; prokaryotic carbonic anhydrases were inhibited as well resulting in growth impairment. In general, non-antibiotics exerted weak antibacterial activities on their own but synergized with antibiotics, and/or reverted resistance and/or attenuated virulence. Conclusions Data summarized in this review support the theory that prokaryotic proteins represent targets for non-antibiotics because of a common evolutionary origin of bacterial- and mammalian targets resulting in highly conserved active centres of both, pro- and eukaryotic proteins with which the non-antibiotics interact and exert antibacterial actions.
Collapse
|
17
|
Taymaz-Nikerel H, Eraslan S, Kırdar B. Insights Into the Mechanism of Anticancer Drug Imatinib Revealed Through Multi-Omic Analyses in Yeast. ACTA ACUST UNITED AC 2020; 24:667-678. [DOI: 10.1089/omi.2020.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, Turkey
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- Koç University Hospital, Diagnosis Center for Genetic Disorders, Istanbul, Turkey
| | - Betül Kırdar
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
18
|
Suzan ZT, Tumkaya L, Mercantepe T, Atak M, Uydu HA. The effect of imatinib administered in the prenatal period on testis development in rats. Hum Exp Toxicol 2020; 40:634-648. [PMID: 32990058 DOI: 10.1177/0960327120958458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to examine the effects of exposure to imatinib in the prenatal period on testis development in rats. METHODS Although all the study groups received intraperitoneal imatinib on prenatal days 1-8, no pregnancy occurred in the Imatinib-80 group. Immunohistochemical analysis, TUNEL, c-kit and PDGF staining revealed no difference between the groups in terms of positivity scoring. RESULTS A significant decrease was detected in total sperm counts in the Imatinib-20 group compared to the control group, but the sperm count was higher in the Imatinib-60 group than in the Imatinib-20 group. At biochemical measurements, the drug increased oxidative stress in the testis and serum in the Imatinib-20 group, but caused a decrease in tissue in the Imatinib-60 group. Thiol measurements revealed a decrease in the testis and serum in the Imatinib-60 group, while an increase in serum measurements was observed in the Imatinib-40 group. Analysis revealed no difference between the groups in terms of protamine and histone gene expression levels in testis tissue exposed to imatinib. CONCLUSION Our findings show that prenatal exposure to imatinib can lead to histopathological and biochemical changes in testis tissue, but that no adverse effect occurs in nuclear maturation of germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Z Topal Suzan
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - L Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - T Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, 175650Recep Tayyip Erdoğan University, Rize, Turkey
| | - M Atak
- Department of Biochemistry, Faculty of Medicine, 187475Recep Tayyip Erdoğan University, Rize, Turkey
| | - H A Uydu
- Department of Biochemistry, Faculty of Medicine, 187475Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
19
|
Mousavi K, Niknahad H, Ghalamfarsa A, Mohammadi H, Azarpira N, Ommati MM, Heidari R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp Hepatol 2020; 6:207-219. [PMID: 33145427 PMCID: PMC7592093 DOI: 10.5114/ceh.2020.99513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cirrhosis-induced heart injury and cardiomyopathy is a serious consequence of this disease. It has been shown that bile duct ligated (BDL) animals could serve as an appropriate experimental model to investigate heart tissue injury in cirrhosis. The accumulation of cytotoxic chemicals (e.g., bile acids) could also adversely affect the heart tissue. Oxidative stress and mitochondrial impairment are the most prominent mechanisms of bile acid cytotoxicity. Taurine (Tau) is the most abundant non-protein amino acid in the human body. The cardioprotective effects of this amino acid have repeatedly been investigated. In the current study, it was examined whether mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of cirrhosis-induced heart injury. Rats underwent BDL surgery. BDL animals received Tau (50, 100, and 500 mg/kg, i.p.) for 42 consecutive days. A significant increase in oxidative stress biomarkers was detected in the heart tissue of BDL animals. Moreover, it was found that heart tissue mitochondrial indices of functionality were deteriorated in the BDL group. Tau treatment significantly decreased oxidative stress and improved mitochondrial function in the heart tissue of cirrhotic animals. These data provide clues for the involvement of mitochondrial impairment and oxidative stress in the pathogenesis of heart injury in BDL rats. On the other hand, Tau supplementation could serve as an effective ancillary treatment against BDL-associated heart injury. Mitochondrial regulating and antioxidative properties of Tau might play a fundamental role in its mechanism of protective effects in the heart tissue of BDL animals.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ghalamfarsa
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
|
21
|
Abdoli N, Sadeghian I, Mousavi K, Azarpira N, Ommati MM, Heidari R. Suppression of cirrhosis-related renal injury by N-acetyl cysteine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 1:30-38. [PMID: 34909640 PMCID: PMC8663932 DOI: 10.1016/j.crphar.2020.100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Cirrhosis-induced renal injury or cholemic nephropathy (CN) is a serious clinical complication with poor prognosis. CN could finally lead to renal failure and the need for organ transplantation. Unfortunately, there is no specific pharmacological intervention against CN to date. On the other hand, various studies mentioned the role of oxidative stress and mitochondrial impairment in the pathogenesis of CN. The current study aimed to evaluate the potential protective effects of NAC as a thiol-reducing agent and antioxidant in CN. Bile duct ligation (BDL) was used as a reliable animal model of cholestasis. BDL animals received NAC (0.25% and 1% w: v) in drinking water for 28 consecutive days. Finally, urine, blood, and kidney samples were collected and analyzed. Significant elevation in serum biomarkers of renal injury, along with urine markers of kidney damage, was evident in the BDL group. Moreover, markers of oxidative stress, including reactive oxygen species (ROS) formation, lipid peroxidation, protein carbonylation, and increased oxidized glutathione (GSSG) were evident detected in the kidney of cholestatic rats. Renal tissue antioxidant capacity and reduced glutathione (GSH) were also significantly depleted in the BDL group. Significant mitochondrial depolarization, depleted ATP content, and mitochondrial permeabilization was also detected in mitochondria isolated from the kidney of cholestatic animals. Renal histopathological alterations consisted of significant tissue fibrosis, interstitial inflammation, and tubular atrophy. It was found that NAC (0.25 and 1% in drinking water for 28 consecutive days) blunted histopathological changes, decreased markers of oxidative stress, and improved mitochondrial indices in the kidney of cirrhotic rats. Moreover, serum and urine biomarkers of renal injury were also mitigated in upon NAC treatment. These data indicate a potential renoprotective role for NAC in cholestasis. The effects of NAC on cellular redox state and mitochondrial function seem to play a fundamental role in its renoprotective effects during CN.
Collapse
Affiliation(s)
- Narges Abdoli
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Reza Heidari
- Iran Food and Drug Administration, Ministry of Health, Tehran, Iran
| |
Collapse
|