1
|
Colello R, Vélez MV, Rodríguez M, Rogé A, Etcheverría AI, Padola NL. Detection of Shiga toxin-producing Escherichia coli in dairy cows: genetic characterization and inhibition of adherence by cattle anti-STEC antibodies to HEp-2 cell. Vet Res Commun 2024; 48:3883-3888. [PMID: 39331343 DOI: 10.1007/s11259-024-10557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen associated with severe disease. Cattle are recognized as the primary animal reservoir of STEC. This study reports the occurrence and characterization of STEC from dairy cows and evaluates the inhibition of adherence by cattle anti-STEC antibodies to the HEp-2 cell. From 151 samples, 30% (n = 45) were positive for stx by PCR screening (25.21% of dairy cows and 46.8% of growing calves). From these positive samples, 17 STEC isolates were characterized. In dairy cows, 3 out of 17 samples carried stx2, 3 out of 17 possessed stx1, and 2 out of 17 carried stx1/stx2. In growing cows, 8 out of 17 samples carried stx1 and 1 out of 17 carried stx1/stx2. Other virulence factors such as ehxA, saa, iha, cah, and eae were detected. The strains were typed into 3 E. coli O groups (O26, O91, and O130). The analysis of the HEp-2 adherence assays indicated that all serum from both cattle categories presented high levels of inhibition of adherence. Considering the severity of the symptoms caused by STEC in humans, searching for factors influencing the colonization of STEC in cattle would help identify strategies to avoid transmission and STEC infection.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| | - M Victoria Vélez
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina.
| | - Marcelo Rodríguez
- Facultad de Ciencias Veterinarias, SAMP, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Analía I Etcheverría
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires , Argentina
| |
Collapse
|
2
|
Hoyle DV, Wee BA, Macleod K, Chase-Topping ME, Bease AG, Tongue SC, Gally DL, Delannoy S, Fach P, Pearce MC, Gunn GJ, Holmes A, Allison L. Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020. Front Microbiol 2023; 14:1260422. [PMID: 38029122 PMCID: PMC10657854 DOI: 10.3389/fmicb.2023.1260422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.
Collapse
Affiliation(s)
- Deborah V. Hoyle
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kareen Macleod
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Margo E. Chase-Topping
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Andrew G. Bease
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sue C. Tongue
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - David L. Gally
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sabine Delannoy
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Michael C. Pearce
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - George J. Gunn
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Colello R, Vélez MV, Farias MVN, Rodríguez M, Montero D, Vidal R, Etcheverría AI, Padola NL. Expression of hes, iha, and tpsA codified in locus of adhesion and autoaggregation and their involvement in the capability of shiga toxin-producing Escherichia coli strains to adhere to epithelial cells. BMC Res Notes 2023; 16:163. [PMID: 37550739 PMCID: PMC10408066 DOI: 10.1186/s13104-023-06433-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli strains LAA-positive are important cause of human infection. The capability to adhere to epithelial cells is a key virulence trait, and genes codified in LAA pathogenicity island could be involved in the adhesion during the pathogenesis of LAA-positive STEC strains. Thus, our objectives were to compare hes-negative and hes-positive STEC strains in their adherence capability to epithelial cells (HEp-2) and to evaluate the expression levels of the hes, iha, and tpsA in the bacteria adhered and non-adhered to HEp-2 cells. These genes are encoded in LAA, and are virulence factors that participate in adhesion and autoaggregation. RESULTS We could not observe differences between the adhesion of strains but also in the expression level of of hes, iha, and tpsA. Genes encoded in LAA contribute to the adhesion phenotype though the expression of STEC adhesins is a coordinated event that depends not only the strain but also on the environment as well as its genetic background. Therefore, the results of this study suggest that LAA ,the most prevalent PAI among LEE-negative STEC strains, plays a role in pathogenesis.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CISAPA, Tandil, Buenos Aires, 7000, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, 7000, Argentina.
| | - M Victoria Vélez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CISAPA, Tandil, Buenos Aires, 7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, 7000, Argentina
| | - M Victoria Nieto Farias
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CISAPA, Tandil, Buenos Aires, 7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, 7000, Argentina
| | - Marcelo Rodríguez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), SAMP, Tandil, Buenos Aires, 7000, Argentina
| | - David Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, 4030555, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, 8320000, Chile
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, 8320000, Chile
| | - Analía I Etcheverría
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CISAPA, Tandil, Buenos Aires, 7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, 7000, Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CISAPA, Tandil, Buenos Aires, 7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, 7000, Argentina
| |
Collapse
|
4
|
Milani G, Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome engineering of Stx1-and Stx2-converting bacteriophages unveils the virulence of the dairy isolate Escherichia coli O174:H2 strain UC4224. Front Microbiol 2023; 14:1156375. [PMID: 37426006 PMCID: PMC10326431 DOI: 10.3389/fmicb.2023.1156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.
Collapse
|
5
|
Lee W, Kim MH, Sung S, Kim E, An ES, Kim SH, Kim SH, Kim HY. Genome-Based Characterization of Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains Isolated in South Korea, 2016-2020. Microorganisms 2023; 11:1285. [PMID: 37317259 DOI: 10.3390/microorganisms11051285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
The global emergence of hybrid diarrheagenic E. coli strains incorporating genetic markers from different pathotypes is a public health concern. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) are associated with diarrhea and hemolytic uremic syndrome (HUS) in humans. In this study, we identified and characterized STEC/ETEC hybrid strains isolated from livestock feces (cattle and pigs) and animal food sources (beef, pork, and meat patties) in South Korea between 2016 and 2020. The strains were positive for genes from STEC and ETEC, such as stx (encodes Shiga toxins, Stxs) and est (encodes heat-stable enterotoxins, ST), respectively. The strains belong to diverse serogroups (O100, O168, O8, O155, O2, O141, O148, and O174) and sequence types (ST446, ST1021, ST21, ST74, ST785, ST670, ST1780, ST1782, ST10, and ST726). Genome-wide phylogenetic analysis revealed that these hybrids were closely related to certain ETEC and STEC strains, implying the potential acquisition of Stx-phage and/or ETEC virulence genes during the emergence of STEC/ETEC hybrids. Particularly, STEC/ETEC strains isolated from livestock feces and animal source foods mostly exhibited close relatedness with ETEC strains. These findings allow further exploration of the pathogenicity and virulence of STEC/ETEC hybrid strains and may serve as a data source for future comparative studies in evolutionary biology.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Hee Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soohyun Sung
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
6
|
Colello R, Baigorri M, Del Canto F, González J, Rogé A, van der Ploeg C, Sánchez Chopa F, Sparo M, Etcheverría A, Padola NL. Occurrence and genetic characterization of Shiga toxin-producing Escherichia coli on bovine and pork carcasses and the environment from transport trucks. World J Microbiol Biotechnol 2023; 39:174. [PMID: 37115263 DOI: 10.1007/s11274-023-03624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe diseases. The ability of STEC to produce disease is associated with Shiga toxin (Stx) production. We investigated the occurrence of STEC on bovine and pork carcasses and walls of trucks where they were transported, and we characterized virulence genes and serotypes of STEC strains. We compared the whole genomic sequencing of a STEC O157:H7 strain isolated from a bovine carcass in this work and a STEC O157:H7 strain isolated from a child with HUS, both isolated in 2019. We studied the relationship between these isolates and others collected in the database. The results show a 40% of STEC and two different serogroups were identified (O130 and O157). STEC O157:H7 were isolated from bovine carcasses and harbored stx2, eae, ehxA, katP, espP, stcE, ECSP_0242/1773/2687/2870/2872/3286/3620 and were classified as lineage I/II. In STEC non-O157 isolates, three isolates were isolated from bovine carcasses and harbored the serogroup O130 and one strain isolated from pork carcasses was O-non-typeable. All STEC non-O157 harbored sxt1 gene. The analysis from the whole genome showed that both STEC O157:H7 strains belonged to the hypervirulent clade 8, ST11, phylogroup E, carried the allele tir 255 T > A T, and they were not clonal. The analysis of information allows us to conclude that the STEC strains circulate in pork and bovine carcasses arriving in transport. This situation represents a risk for the consumers and the need to implement an integrated STEC control in the food chain.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina.
| | - Manuela Baigorri
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana González
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Claudia van der Ploeg
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Federico Sánchez Chopa
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Mónica Sparo
- Laboratorio de Microbiología Clínica, Hospital Ramón Santamarina, Tandil, Buenos Aires, Argentina
| | - Analía Etcheverría
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| |
Collapse
|
7
|
Vélez MV, Colello R, Etcheverría AI, Padola NL. [Shiga toxin producing Escherichia coli: the challenge of adherence to survive]. Rev Argent Microbiol 2023; 55:100-107. [PMID: 35676186 DOI: 10.1016/j.ram.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Shiga Toxin-producing Escherichia coli (STEC) is recognized as being responsible for a large number of foodborne illnesses around the world. The pathogenicity of STEC has been related to Stx toxins. However, the ability of STEC to colonize the host and other surfaces can be essential for developing its pathogenicity. Different virulence profiles detected in STEC could cause the emergence of strains carrying new genes codified in new pathogenicity islands linked to metabolism and adherence. Biofilm formation is a spontaneous mechanism whereby STEC strains resist in a hostile environment being able to survive and consequently infect the host through contaminated food and food contact surfaces. Biofilm formation shows intra-and inter-serotype variability, and its formation does not depend only on the microorganisms involved. Other factors related to the environment (such as pH, temperature) and the surface (stainless steel and polystyrene) influence biofilm expression. The «One Health» concept implies the interrelation between public, animal, and environmental health actors to ensure food safety, prevent cross-contamination and resistance to sanitizers, highlighting the need to identify emerging pathogens through new molecular markers of rapid detection that involve STEC strains carrying the Locus of Enterocyte Effacement or Locus of Adhesion and Autoaggregation.
Collapse
Affiliation(s)
- M V Vélez
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - R Colello
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - A I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - N L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina.
| |
Collapse
|
8
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
9
|
Loads of Coliforms and Fecal Coliforms and Characterization of Thermotolerant Escherichia coli in Fresh Raw Milk Cheese. Foods 2022; 11:foods11030332. [PMID: 35159482 PMCID: PMC8834472 DOI: 10.3390/foods11030332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to assess the hygienic status of raw milk cheese and determine the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65% of samples exhibited coliforms at 44.5 °C. Of 150 recovered thermotolerant strains, 140 (93.3%) were identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking virulence pattern, stx1−, stx2+, eae−, was detected. Eleven strains (7.8%, 11/140) showed resistance to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A), and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance in raw milk cheese to identify the potential public health burden associated with its consumption.
Collapse
|
10
|
Shen J, Zhi S, Guo D, Jiang Y, Xu X, Zhao L, Lv J. Prevalence, Antimicrobial Resistance, and Whole Genome Sequencing Analysis of Shiga Toxin-Producing Escherichia coli (STEC) and Enteropathogenic Escherichia coli (EPEC) from Imported Foods in China during 2015-2021. Toxins (Basel) 2022; 14:68. [PMID: 35202096 PMCID: PMC8875648 DOI: 10.3390/toxins14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are foodborne pathogens that cause hemolytic uremic syndrome and fatal infant diarrhea, respectively, but the characterization of these bacteria from imported food in China are unknown. A total of 1577 food samples from various countries during 2015-2021 were screened for STEC and EPEC, and the obtained isolates were tested for antimicrobial resistance and whole genome sequencing analysis was performed. The prevalence of STEC and EPEC was 1.01% (16/1577) and 0.51% (8/1577), respectively. Antimicrobial resistances to tetracycline (8%), chloramphenicol (8%), ampicillin (4%), ceftazidime (4%), cefotaxime (4%), and trimethoprim-sulfamethoxazole (4%) were observed. The antimicrobial resistance phenotypes corresponded with genotypes for most strains, and some resistance genes were related to mobile genetic elements. All 16 STEC isolates were eae negative, two solely contained stx1 (stx1a or stx1c), 12 merely carried stx2 (stx2a, stx2d, or stx2e), and two had both stx1 and stx2 (stx1c + stx2b, stx1a + stx2a + stx2c). Although they were eae negative, several STEC isolates carried other adherence factors, such as iha (5/16), sab (1/16), and lpfA (8/16), and belonged to serotypes (O130:H11, O8:H19, and O100:H30) or STs (ST297, ST360), which have caused human infections. All the eight EPEC isolates were atypical EPEC; six serotypes and seven STs were found, and clinically relevant EPEC serotypes O26:H11, O103:H2, and O145:H28 were identified. Two STEC/ETEC (enterotoxigenic E. coli) hybrids and one EPEC/ETEC hybrid were observed, since they harbored sta1 and/or stb. The results revealed that food can act as a reservoir of STEC/EPEC with pathogenic potential, and had the potential ability to transfer antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China;
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Xuebin Xu
- Shanghai Centers for Disease Prevention and Control, Shanghai 200336, China
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China; (J.S.); (D.G.); (L.Z.)
| | - Jingzhang Lv
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China;
| |
Collapse
|
11
|
Scalise ML, Garimano N, Sanz M, Padola NL, Leonino P, Pereyra A, Casale R, Amaral MM, Sacerdoti F, Ibarra C. Detection of Shiga Toxin-Producing Escherichia coli (STEC) in the Endocervix of Asymptomatic Pregnant Women. Can STEC Be a Risk Factor for Adverse Pregnancy Outcomes? Front Endocrinol (Lausanne) 2022; 13:945736. [PMID: 35957815 PMCID: PMC9358589 DOI: 10.3389/fendo.2022.945736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of Escherichia coli in the vaginal microbiome has been associated with pregnancy complications. In previous works, we demonstrated that Shiga toxin-producing Escherichia coli (STEC) can produce abortion and premature delivery in rats and that Shiga toxin type 2 (Stx2) can impair human trophoblast cell lines. The hypothesis of this work was that STEC may colonize the lower female reproductive tract and be responsible for adverse pregnancy outcomes. Thus, the aim of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix of asymptomatic pregnant women. For that purpose, endocervical swabs were collected from pregnant women during their prenatal examination. Swab samples were enriched in a differential medium to select Enterobacteria. Then, positive samples were analyzed by PCR to detect genes characteristic of Escherichia sp. (such as uidA and yaiO), genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157), and STEC virulence factor genes (such as stx1, stx2, eae, lpfAO113, hcpA, iha, sab, subAB). The cytotoxic effects of stx2-positive supernatants from E. coli recovered from the endocervix were evaluated in Vero cells. Our results showed that 11.7% of the endocervical samples were positive for E. coli. Additionally, we found samples positive for stx2 and other virulence factors for STEC. The bacterial supernatant from an isolate identified as E. coli O113:NT, carrying the stx2 gene, exhibited cytotoxic activity in Vero, Swan 71 and Hela cells. Our results open a new perspective regarding the presence of STEC during pregnancy.
Collapse
Affiliation(s)
- María Luján Scalise
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica, IFIBIO-Houssay (UBA-CONICET), Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica, IFIBIO-Houssay (UBA-CONICET), Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Sanz
- CIVETAN-Centro de Investigación Veterinaria Tandil (CONICET, CICPBA), Facultad de Ciencias Veterinarias, Tandil, Argentina
| | - Nora Lia Padola
- CIVETAN-Centro de Investigación Veterinaria Tandil (CONICET, CICPBA), Facultad de Ciencias Veterinarias, Tandil, Argentina
| | - Patricia Leonino
- Departamento de Obstetricia, Hospital Nacional “Prof. A. Posadas”, Buenos Aires, Argentina
| | - Adriana Pereyra
- Departamento de Obstetricia, Hospital Nacional “Prof. A. Posadas”, Buenos Aires, Argentina
| | - Roberto Casale
- Departamento de Obstetricia, Hospital Nacional “Prof. A. Posadas”, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica, IFIBIO-Houssay (UBA-CONICET), Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica, IFIBIO-Houssay (UBA-CONICET), Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Cristina Ibarra, ; Flavia Sacerdoti,
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica, IFIBIO-Houssay (UBA-CONICET), Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Cristina Ibarra, ; Flavia Sacerdoti,
| |
Collapse
|
12
|
Distribution of virulence factors, antimicrobial resistance genes and phylogenetic relatedness among Shiga toxin-producing Escherichia coli serogroup O91 from human infections. Int J Med Microbiol 2021; 311:151541. [PMID: 34757276 DOI: 10.1016/j.ijmm.2021.151541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to the serogroup O91 are among the most common non-O157 STEC serogroups associated with human illness in Europe. This study aimed to analyse the virulence factors, antimicrobial resistance genes and phylogenetic relatedness among 48 clinical STEC O91 isolates collected during 2003-2019 in Switzerland. The isolates were subjected to whole genome sequencing using short-read sequencing technologies and a subset of isolates additionally to long-read sequencing. They belonged to O91:H10 (n=6), O91:H14 (n=40), and O91:H21 (n=2). Multilocus sequence typing showed that the O91:H10 isolates all belonged to sequence type (ST)641, while the O91:H14 isolates were assigned to ST33, ST9700, or were non-typeable. Both O91:H21 isolates belonged to ST442. Shiga toxin gene stx1a was the most common Shiga toxin gene subtype among the isolates, followed by stx2b, stx2d and stx2a. All isolates were LEE-negative and carried one or two copies of the IrgA adhesin gene iha. In a subset of long-read sequenced isolates, modules of the Locus of Adhesion and Autoaggregation pathogenicity island (LAA-PAI) carrying iha and other genes such as hes, lesP or agn43 were identified. A large proportion of STEC O91:H14 carried the subtilase cytotoxin gene subA, colicin genes (cba, cea, cib and cma) or microcin genes (mcmA, mchB, mchC and mchF). STEC O91:H14 were further distinguished from STEC O91:H10/H21 by one or more virulence factors found in extraintestinal pathogenic E. coli (ExPEC), including hlyF, iucC/iutA, kpsE and traT. The hlyF gene was identified on a novel mosaic plasmid that was unrelated to hlyF+ plasmids described previously in STEC. Core genome phylogenetic analysis revealed that STEC O91:H10 and STEC O91:H21 were clonally conserved, whereas STEC O91:H14 were clonally diverse. Among three STEC O91:H14 isolates, a number of resistance genes were identified, including genes that mediate resistance to aminoglycosides (aadA, aadA2, aadA9, aadA23, aph(3'')-Ib and aph(6)-Id), chloramphenicol (cmlA), sulphonamides (sul2 and sul3), and trimethoprim (drfA12). Our data contribute to understanding the genetic diversity and differing levels of virulence potential within the STEC O91 serogroup.
Collapse
|
13
|
Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle from Central and Southern Chile. Animals (Basel) 2021; 11:ani11082388. [PMID: 34438845 PMCID: PMC8388633 DOI: 10.3390/ani11082388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cattle are the main reservoir of Shiga toxin-producing E. coli (STEC), foodborne pathogens that cause severe disease and outbreaks. However, not all STEC cause human illnesses or have the same virulence potential. Characterizing strains isolated worldwide allows insights into how strains spread and which isolates have a more significant risk potential. This study described STEC isolation rates from cattle in Chile and characterized 30 isolates. We obtained 93 STEC isolates from 56/446 (12.6%) fecal cattle samples. Then, 30 non-O157 STEC isolates were selected for complete characterization; we found isolates of 16 different sequence types and 17 serotypes. One isolate was resistant to tetracycline and carried resistance genes against the drug. Surveyed virulence genes (n = 31) were present from 13% to 100% of isolates, and one isolate carried 26/31 virulence genes. Most isolates (90%; 27/30) carried the stx2 gene, which is frequently linked to strains causing severe disease. A phylogenetic reconstruction demonstrated that isolates clustered based on serotypes, independent of their geographical origin (Central or Southern Chile). These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of virulence genes. Abstract Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world’s most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and southern Chile. We analyzed 446 cattle fecal samples and isolated non-O157 STEC from 12.6% (56/446); a total of 93 different isolates were recovered. Most isolates displayed β-glucuronidase activity (96.8%; 90/93) and fermented sorbitol (86.0%; 80/93), whereas only 39.8% (37/93) were resistant to tellurite. A subgroup of 30 representative non-O157 STEC isolates was selected for whole-genome sequencing and bioinformatics analysis. In silico analysis showed that they grouped into 16 different sequence types and 17 serotypes; the serotypes most frequently identified were O116:H21 and O168:H8 (13% each). A single isolate of serotype O26:H11 was recovered. One isolate was resistant to tetracycline and carried resistance genes tet(A) and tet(R); no other isolate displayed antimicrobial resistance or carried antimicrobial resistance genes. The intimin gene (eae) was identified in 13.3% (4/30) of the genomes and 90% (27/30) carried the stx2 gene. A phylogenetic reconstruction demonstrated that the isolates clustered based on serotypes, independent of geographical origin. These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of critical virulence genes.
Collapse
|
14
|
Victoria VM, Rocío C, Silvina E, Inés EA, Lía PN. Biofilm formation by LEE-negative Shiga Toxin-Producing Escherichia coli strains. Microb Pathog 2021; 157:105006. [PMID: 34044049 DOI: 10.1016/j.micpath.2021.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) include several serotypes isolated from cases of hemorrhagic colitis and, hemolytic uremic syndrome. Although O157:H7 is the most predominant STEC serotype, more than 100 non-O157 serogroups cause diseases in humans. Some STEC carry a Locus of Enterocyte Effacement (LEE-positive); however, STEC that do not carry LEE (LEE-negative) have also been associated with illness, mainly those harbouring the Locus of Adhesion and Autoaggregation (LAA). LAA carry some genes such as hes, iha, tpsA, and agn43, related with pathogenicity. One of them is the ability to form biofilms on different environments, which can contaminate food and generate infections while protecting themselves against adverse conditions. Considering that LAA could be responsible for some adherence mechanisms, the aims of this study were to compare different serogroup of LEE-negative STEC strains in their ability to form biofilms and to evaluate the participation of some genes encoding in LAA. A total of 348 LEE-negative STEC strains was analyzed. The presence of hes, iha, tpsA and agn43 were determined by monoplex PCR. From them, 48 STEC strains belonging to serogroups O113, O130, O171, O174 and, O178 were assayed for their ability to form biofilm. The most prevalent genes detected were agn43 (72.1%) and tpsA (69.5%). The iha and hes genes were present in 63.7% and 54% of the strains, respectively. Although all STEC strains were able to form biofilm, it was found a high variability between them. The relation between the biofilm formation and the presence of each gene was not statistically significant, suggesting that biofilm formation is independent of the presence of those genes. Highlighting that there is no treatment for HUS, it is once again notable that prevention measures and control strategies to prevent biofilm formation are important factors in reducing STEC transmission.
Collapse
Affiliation(s)
- Vélez María Victoria
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| | - Colello Rocío
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina.
| | - Etcheverría Silvina
- Cátedra Estadística, Econometría y Modelización. Tandil, Facultad de Ciencias Económicas, UNCPBA. (7000) Tandil, Buenos Aires, Argentina
| | - Etcheverría Analía Inés
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| | - Padola Nora Lía
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| |
Collapse
|
15
|
Cortimiglia C, Borney MF, Bassi D, Cocconcelli PS. Genomic Investigation of Virulence Potential in Shiga Toxin Escherichia coli (STEC) Strains From a Semi-Hard Raw Milk Cheese. Front Microbiol 2021; 11:629189. [PMID: 33597935 PMCID: PMC7882498 DOI: 10.3389/fmicb.2020.629189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) represents a significant cause of foodborne disease. In the last years, an increasing number of STEC infections associated with the consumption of raw and pasteurized milk cheese have been reported, contributing to raise the public awareness. The aim of this study is to evaluate the main genomic features of STEC strains isolated from a semi-hard raw milk cheese, focusing on their pathogenic potential. The analysis of 75 cheese samples collected during the period between April 2019 and January 2020 led to the isolation of seven strains from four stx-positive enrichment. The genome investigation evidenced the persistence of two serotypes, O174:H2 and O116:H48. All strains carried at least one stx gene and were negative for eae gene. The virulence gene pattern was homogeneous among the serogroup/ST and included adherence factors (lpfA, iha, ompT, papC, saa, sab, hra, and hes), enterohemolysin (ehxA), serum resistance (iss, tra), cytotoxin-encoding genes like epeA and espP, and the Locus of Adhesion and Autoaggregation Pathogenicity Islands (LAA PAIs) typically found in Locus of Enterocyte Effacement (LEE)-negative STEC. Genome plasticity indicators, namely, prophagic sequences carrying stx genes and plasmid replicons, were detected, leading to the possibility to share virulence determinants with other strains. Overall, our work adds new knowledge on STEC monitoring in raw milk dairy products, underlining the fundamental role of whole genome sequencing (WGS) for typing these unknown isolates. Since, up to now, some details about STEC pathogenesis mechanism is lacking, the continuous monitoring in order to protect human health and increase knowledge about STEC genetic features becomes essential.
Collapse
Affiliation(s)
- Claudia Cortimiglia
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Francesca Borney
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Daniela Bassi
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-Alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
16
|
Pavez-Muñoz E, González C, Fernández-Sanhueza B, Sánchez F, Escobar B, Ramos R, Fuenzalida V, Galarce N, Arriagada G, Neira V, Muñoz-Aguayo J, Flores-Figueroa C, Johnson TJ, Alegría-Morán R. Antimicrobial Usage Factors and Resistance Profiles of Shiga Toxin-Producing Escherichia coli in Backyard Production Systems From Central Chile. Front Vet Sci 2021; 7:595149. [PMID: 33521079 PMCID: PMC7844202 DOI: 10.3389/fvets.2020.595149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen and important cause of foodborne disease worldwide. Many animal species in backyard production systems (BPS) harbor STEC, systems characterized by low biosecurity and technification. No information is reported on STEC circulation, antimicrobial resistance (AMR) and potential drivers of antimicrobial usage in Chilean BPS, increasing the risk of maintenance and transmission of zoonotic pathogens and AMR generation. Thus, the aim of this study was to characterize phenotypic and genotypic AMR and to study the epidemiology of STEC isolated in BPS from Metropolitana region, Chile. A total of 85 BPS were sampled. Minimal inhibitory concentration and whole genome sequencing was assessed in 10 STEC strain isolated from BPS. All strains were cephalexin-resistant (100%, n = 10), and five strains were resistant to chloramphenicol (50%). The most frequent serotype was O113:H21 (40%), followed by O76:H19 (40%), O91:H14 (10%), and O130:H11 (10%). The stx1 type was detected in all isolated strains, while stx2 was only detected in two strains. The Stx subtype most frequently detected was stx1c (80%), followed by stx1a (20%), stx2b (10%), and stx2d (10%). All strains harbored chromosomal blaAmpC. Principal component analysis shows that BPS size, number of cattle, pet and horse, and elevation act as driver of antimicrobial usage. Logistic multivariable regression shows that recognition of diseases in animals (p = 0.038; OR = 9.382; 95% CI: 1.138–77.345), neighboring poultry and/or swine BPS (p = 0.006; OR = 10.564; 95% CI: 1.996–55.894), visit of Veterinary Officials (p = 0.010; OR = 76.178; 95% CI: 2.860–2029.315) and close contact between animal species in the BPS (p = 0.021; OR = 9.030; 95% CI: 1.385–58.888) increase significantly the risk of antimicrobial use in BPS. This is the first evidence of STEC strains circulating in BPS in Chile, exhibiting phenotypic AMR, representing a threat for animal and public health. Additionally, we identified factors acting as drivers for antimicrobial usage in BPS, highlighting the importance of integration of these populations into surveillance and education programs to tackle the potential development of antimicrobial resistance and therefore the risk for ecosystemic health.
Collapse
Affiliation(s)
- Erika Pavez-Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camilo González
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Bastián Fernández-Sanhueza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales-ICA3, Universidad de O'Higgins, Rancagua, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Jeannette Muñoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Saint Paul, MN, United States
| | - Cristian Flores-Figueroa
- Mid-Central Research and Outreach Center, University of Minnesota, Saint Paul, MN, United States
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago, Chile
| |
Collapse
|
17
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
18
|
Etiology of acute gastroenteritis among children less than 5 years of age in Bucaramanga, Colombia: A case-control study. PLoS Negl Trop Dis 2020; 14:e0008375. [PMID: 32603324 PMCID: PMC7357789 DOI: 10.1371/journal.pntd.0008375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/13/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Acute gastroenteritis (AGE) is a major cause of morbidity and mortality in children aged less than 5 years in low- and middle-income countries where limited access to potable water, poor sanitation, deficient hygiene, and food product contamination are prevalent. Research on the changing etiology of AGE and associated risk factors in Latin America, including Colombia, is essential to understand the epidemiology of these infections. The primary objectives of this study were to describe etiology of moderate to severe AGE in children less than 5 years of age from Bucaramanga, Colombia, a middle-income country in Latin American, and to identify the presence of emerging E. coli pathotypes. Methodology/Principal findings This was a prospective, matched for age, case-control study to assess the etiology of moderate to severe AGE in children less than 5 years of age in Bucaramanga, Colombia, South America. We tested for 24 pathogens using locally available diagnostic testing, including stool culture, polymerase chain reaction, microscopy and enzyme-linked immunoassay. Adjusted attributable fractions were calculated to assess the association between AGE and each pathogen in this study population. The study included 861 participants, 431 cases and 430 controls. Enteric pathogens were detected in 71% of cases and in 54% of controls (p = <0.001). Co-infection was identified in 28% of cases and in 14% of controls (p = <0.001). The adjusted attributable fraction showed that Norovirus GII explained 14% (95% CI: 10–18%) of AGE, followed by rotavirus 9.3% (6.4–12%), adenovirus 3% (1–4%), astrovirus 2.9% (0.6–5%), enterotoxigenic Escherichia coli (ETEC) 2.4% (0.4–4%), Cryptosporidium sp. 2% (0.5–4%), Campylobacter sp. 2% (0.2–4%), and Salmonella sp.1.9% (0.3 to 3.5%). Except for Cryptosporidium, all parasite infections were not associated with AGE. Three emergent diarrheagenic E. coli pathotypes were identified in cases (0.7%), including an enteroaggregative/enterotoxigenic E.coli (EAEC/ETEC), an enteroaggregative/enteropathogenic E.coli (EAEC/EPEC), and an emergent enteroinvasive E. coli with a rare O96:H19. No deaths were reported among cases or controls. Conclusions/Significance Norovirus and rotavirus explained the major proportion of moderate to severe AGE in this study. Higher proportion of infection in cases, in the form of single infections or co-infections, showed association with AGE. Three novel E. coli pathotypes were identified among cases in this geographic region. Acute gastroenteritis (AGE) is a leading cause of mortality in children under 5 years of age in low- and middle-income countries (LMIC). The highest burden of AGE disease is concentrated in tropical areas where populations lack access to clean water, adequate sanitation and hygiene, making this condition a neglected disease. Limited information on etiology, associated malnutrition, and mortality among underserved communities makes difficult the development of strategies for AGE prevention and treatment. This case-control study among children less than 5 years of age in Bucaramanga, Colombia, revealed that viral followed by bacterial organisms explained the larger proportion of AGE, being norovirus the most common organism. The higher rate of infections and co-infections among cases compared to controls was associated with AGE. This study also reports the identification of three new E. coli pathotypes among cases designated as biofilm-forming enteroinvasive E. coli (BF-EIEC), enteroaggregative/enteropathogenic E. coli, and enteroaggregative/enterotoxigenic E. coli (EAEC/ETEC).
Collapse
|