1
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood–brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Gennadii Piavchenko,
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
- Igor Meglinski,
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Ramos-Languren LE, Avila-Luna A, García-Díaz G, Rodríguez-Labrada R, Vázquez-Mojena Y, Parra-Cid C, Montes S, Bueno-Nava A, González-Piña R. Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery. Neurochem Res 2021; 46:3179-3189. [PMID: 34387812 DOI: 10.1007/s11064-021-03417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico
| | - Alberto Avila-Luna
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Yaimee Vázquez-Mojena
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Carmen Parra-Cid
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Sergio Montes
- Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico
| | - Antonio Bueno-Nava
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico.
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
- Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico.
| |
Collapse
|
3
|
Darkwah WK, Aidoo G, Akoto D, Alhassan K, Adormaa BB, Puplampu JB. Proliferative activity of various grades and types of breast carcinoma using AgNOR (Argyrophilic Nuclear Organizer Region) expression and its prognostic significance. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1925356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Williams Kweku Darkwah
- College of Environment, Environmental Engineering Department, Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, People’s Republic of China
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Gideon Aidoo
- Clinical Research Laboratory Department, 37 Military Teaching Hospital, Accra, Ghana
| | - Dickson Akoto
- Department of Biology, College of Biochemistry, Université 08 Mai 1945 de Guelma, Guelma, Algeria
| | - Kadri Alhassan
- Clinical Research Laboratory Department, Holy Family Hospital, Nkawkaw, Ghana
| | - Buanya Beryl Adormaa
- College of Environment, Environmental Engineering Department, Ministry of Education, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, People’s Republic of China
| | - Joshua Buer Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|