1
|
Villamil-Parra W, Moscoso-Loaiza L. Effects of physical exercise on Irisin and BDNF concentrations, and their relationship with cardiometabolic and mental health of individuals with Metabolic Syndrome: A Systematic Review. Exp Gerontol 2024; 198:112640. [PMID: 39579805 DOI: 10.1016/j.exger.2024.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Chronic Non-Communicable Diseases (NCDs), including cardiovascular diseases, cancer, chronic respiratory diseases, and diabetes, are the leading global causes of mortality, accounting for 71 % of deaths annually. Metabolic Syndrome (MS), characterized by hypertension, obesity, insulin resistance, and dyslipidemia, is a significant risk factor for NCDs. Physical inactivity exacerbates these conditions, contributing to poor cardiovascular and mental health outcomes. OBJECTIVE To analyze the effects of physical exercise on Irisin and Brain-Derived Neurotrophic Factor (BDNF) concentrations and their relationship with cardiometabolic and mental health of individuals with MS. METHODS A systematic review was conducted of articles published between August 2023 and June 2024 in ScienceDirect, PubMed, and SciELO, following PRISMA guidelines. Inclusion criteria encompassed observational studies, clinical trials, and reviews with high methodological quality. The review focused on Irisin, BDNF, physical exercise, and MS. RESULTS A total of 584 articles were identified, with 43 selected for detailed analysis. The review highlights that physical exercise significantly impacts Irisin and BDNF levels, which in turn influence metabolic and mental health. Irisin, a myokine secreted during exercise, promotes the conversion of white adipose tissue to brown adipose tissue, enhancing energy expenditure and metabolic health. Elevated Irisin levels are associated with improved cognitive function and mental well-being. BDNF, a neurotrophin, supports neuronal growth and cognitive function. Exercise-induced increases in BDNF levels are linked to enhanced neuroplasticity, reduced anxiety, and improved mood. CONCLUSION Understanding the role of Irisin and BDNF in response to physical exercise offers valuable insights for developing strategies to manage and prevent MS and its related mental health issues. Further research is needed to elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
- Wilder Villamil-Parra
- Departamento de Movimiento Corporal Humano, Facultad de Enfermería y Rehabilitación, Universidad de la Sabana, Puente del Común Km. 7, Autopista Norte, Chía, Cundinamarca, Colombia.
| | - Luisa Moscoso-Loaiza
- Departamento de Enfermería, Facultad de Enfermería, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03 Bogotá, D.C., Colombia.
| |
Collapse
|
2
|
Ceylan Hİ, Silva AF, Ramirez-Campillo R, Murawska-Ciałowicz E. Exploring the Effect of Acute and Regular Physical Exercise on Circulating Brain-Derived Neurotrophic Factor Levels in Individuals with Obesity: A Comprehensive Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:323. [PMID: 38785805 PMCID: PMC11117522 DOI: 10.3390/biology13050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Obesity is a major global health concern linked to cognitive impairment and neurological disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise offers health benefits, including improved circulating BDNF levels and cognitive function, but the specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear. Understanding this can guide interventions to enhance brain health and counter potential cognitive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and regular physical exercise on circulating BDNF in individuals with obesity. The target population comprised individuals classified as overweight or obese, encompassing both acute and chronic protocols involving all training methods. A comprehensive search was conducted across computerized databases, including PubMed, Academic Search Complete, and Web of Science, in August 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95% CI = -0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and type when studying neurobiological responses in obesity and exercise research. The study's results have implications for exercise prescription in obesity management and highlight the need for tailored interventions to optimize neurotrophic responses. Future research should focus on elucidating the adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise in this population. However, further research is needed considering limitations such as the potential age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact circulating BDNF.
Collapse
Affiliation(s)
- Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Turkey
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile;
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wrocław University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
3
|
Radikova Z, Mosna L, Eckerstorfer C, Bajer B, Havranova A, Imrich R, Vlcek M, Penesova A. Plasma irisin and the brain-derived neurotrophic factor levels in sedentary subjects: effect of 8-weeks lifestyle intervention. Endocr Regul 2024; 58:115-128. [PMID: 38861537 DOI: 10.2478/enr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Objectives. Sedentary lifestyle increasingly observed in the population contributes to the incremental incidence of obesity, cardiovascular diseases, mental disorders, type 2 diabetes, hyper-tension, dyslipidemia, and others. Physical inactivity together with an imbalance in caloric intake and expenditure leads to a loss of muscle mass, reduced insulin sensitivity, and accumulation of the visceral fat. Organokines (adipokines, myokines, hepatokines, etc.) serve in the organism for inter-organ communication. However, human studies focused on the exercise-related changes in plasma levels of certain myokines have produced contradictory results. In the present study, we verified a hypothesis that myokine irisin, which is expected to increase in response to physical activity, induces brain-derived neurotrophic factor (BDNF) production and by this way mediates the beneficial effect of exercise on several brain functions. Subjects and Methods. Women (n=27) and men (n=10) aged 44.5±12.0 years, who were sedentary and overweight/obese (men ≥25%, women ≥28% body fat), participated in the study. The effect of an 8-week intensive lifestyle intervention (150 minutes of moderate physical activity per week, diet modification, and reduction of caloric intake) on the selected organokines (irisin, BDNF) in the context of an expected improvement in cardiometabolic status was examined. Results. The 8-week lifestyle intervention resulted in a significant (p<0.05) reduction in body mass index, body fat, blood pressure, insulin resistance, lipid and liver parameters, and irisin levels (p<0.001). However, BDNF increase in the whole group did not reach statistical significance. After the improvement of cardiometabolic parameters, a significant decrease in irisin and increase in BDNF levels were also observed in the subgroup with unsatisfactory (≤5%) body weight reduction. Neither relationship between irisin and BDNF levels, nor effect of age or sex on their levels was observed. Conclusions. We cannot confirm the hypothesis that exercise-induced irisin may increase the BDNF levels, whereas, the organokine levels in the periphery may not completely reflect the processes in the brain compartments. The observed decrease in irisin levels after 8-week intensive lifestyle intervention program, which was in contrary to its supposed mechanisms of action and dynamics, suggests the presence of several yet undiscovered impacts on the secretion of irisin.
Collapse
Affiliation(s)
- Zofia Radikova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Lucia Mosna
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Carmen Eckerstorfer
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Boris Bajer
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Havranova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Richard Imrich
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Miroslav Vlcek
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Fatma R, Chauhan W, Shahi MH, Afzal M. Association of BDNF gene missense polymorphism rs6265 (Val66Met) with three quantitative traits, namely, intelligence quotient, body mass index, and blood pressure: A genetic association analysis from North India. Front Neurol 2023; 13:1035885. [PMID: 36742047 PMCID: PMC9894895 DOI: 10.3389/fneur.2022.1035885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF), a neurotransmitter modulator, plays a significant role in neuronal survival and growth and participates in neuronal plasticity, thus being essential for learning, memory, and the development of cognition. Additionally, it is crucial for appetite, weight, and metabolic control and plays a pivotal role in the cardiovascular system. The Val66Met polymorphism (rs6265) of the BDNF gene causes a decrease in BDNF secretion and plays a role in impairments in cognition, energy homeostasis, and cardiovascular events. The present study aimed to evaluate the association of polymorphism (rs6265) of the BDNF gene with three quantitative traits simultaneously, namely, intelligence quotient (IQ), body mass index (BMI), and blood pressure (BP). Methods Psychometric, morphometric, and physiometric data of the total participants (N = 246) were collected. WASI-IIINDIA was used to measure cognitive ability. Genotyping was carried out using allele-specific PCR for the rs6265 polymorphism (C196T), and genotypes were determined. Statistical analyses were performed at p < 0.05 significance level using MS-Excel and SigmaPlot. The odds ratio models with a 95% confidence interval were used to test the associations. The used models are co-dominant, recessive, dominant, over-dominant, and additive. Results The allelic frequencies of alleles C and T were 72 and 28%, respectively. Under the dominant genetic model, a significant susceptible association of minor allele T was observed with a lower average verbal comprehensive index (OR = 2.216, p = 0.003, CI (95%) =1.33-3.69), a lower average performance reasoning index (OR = 2.634, p < 0.001, CI (95%) = 1.573-4.41), and a lower average full-scale IQ-4 (OR = 3.159, p < 0.001, CI (95%) = 1.873-5.328). Carriers of Met-alleles were found to have an increased body mass index (OR = 2.538, p < 0.001, CI (95%) = 1.507-4.275), decreased systolic blood pressure (OR = 2.051, p = 0.012, CI (95%) = 1.202-3.502), and decreased diastolic blood pressure (OR = 2.162, p = 0.006, CI (95%) = 1.278-3.657). Under the recessive genetic model, several folds decrease in IQ and BP and an increase in BMI with the presence of the T allele was also detected. Conclusion This novel study may improve our understanding of genetic alterations to the traits and hence be helpful for clinicians and researchers to investigate the diagnostic and prognostic value of this neurotrophic factor.
Collapse
Affiliation(s)
- Rafat Fatma
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Waseem Chauhan
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mehdi Hayat Shahi
- Interdisciplinary Brain Research Centre, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India,*Correspondence: Mohammad Afzal ✉ ; ✉
| |
Collapse
|
5
|
Di-Bonaventura S, Fernández-Carnero J, Matesanz-García L, Arribas-Romano A, Polli A, Ferrer-Peña R. Effect of Different Physical Therapy Interventions on Brain-Derived Neurotrophic Factor Levels in Chronic Musculoskeletal Pain Patients: A Systematic Review. Life (Basel) 2023; 13:163. [PMID: 36676112 PMCID: PMC9867147 DOI: 10.3390/life13010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The main objectives of this review were, firstly, to study the effect of different physiotherapy interventions on BDNF levels, and, secondly, to analyze the influence of physiotherapy on pain levels to subsequently draw conclusions about its possible relationship with BDNF. BACKGROUND Based on the theory that neurotrophic factors such as BDNF play a fundamental role in the initiation and/or maintenance of hyperexcitability of central neurons in pain, it was hypothesized that the levels of this neurotrophic factor may be modified by the application of therapeutic interventions, favoring a reduction in pain intensity. METHODS A literature search of multiple electronic databases (Pubmed, PsycINFO, Medline (Ebsco), Scopus, WOS, Embase) was conducted to identify randomized control trials (RCTs) published without language restrictions up to and including March 2022. The search strategy was based on the combination of medical terms (Mesh) and keywords relating to the following concepts: "pain", "chronic pain", "brain derived neurotrophic factor", "BDNF", "physiotherapy", and "physical therapy". A total of seven papers were included. RESULTS There were two studies that showed statistically significant differences in pain intensity reduction and an increase in the BDNF levels that used therapies such as rTMS and EIMS in patients with chronic myofascial pain. However, the same conclusions cannot be drawn for the other physical therapies applied. CONCLUSIONS rTMS and EIMS interventions achieved greater short-term reductions in pain intensity and increased BDNF over other types of interventions in chronic myofascial pain patients, as demonstrated by a moderate amount of evidence. In contrast, other types of physical therapy (PT) interventions did not appear to be more effective in decreasing pain intensity and increasing BDNF levels than placebo PT or minimal intervention, as a low amount of evidence was found.
Collapse
Affiliation(s)
- Silvia Di-Bonaventura
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
- Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, 28922 Madrid, Spain
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Grupo de Investigación de Dolor Musculoesqueletico y Control Motor, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | - Luis Matesanz-García
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Pleinlaan 22, 1050 Brussels, Belgium
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Blok D, Bus 7001, 3000 Leuven, Belgium
| | - Raúl Ferrer-Peña
- La Paz Hospital Institute for Health Research, IdiPAZ, 28029 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Movement Sciences (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, CSEU La Salle, Universidad Autonóma de Madrid, 28023 Madrid, Spain
| |
Collapse
|
6
|
The Association between Brain-Derived Neurotrophic Factor (BDNF) Protein Level and Body Mass Index. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010099. [PMID: 36676721 PMCID: PMC9865735 DOI: 10.3390/medicina59010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Background and Objectives: Obesity is a major health concern worldwide. Many studies emphasize the important role of brain-derived neurotrophic factor (BDNF) in regulating appetite and body weight. We aimed to investigate the association between BDNF protein serum levels and body mass index (BMI). Materials and Methods: We conducted a cross-sectional study among 108 healthy adult participants divided into six categories depending on their body mass index (BMI). The ages of the participants ranged between 21 to 45 years. The BDNF serum level was measured using the enzyme-linked immunosorbent assay (ELISA) technique. Results: A Kruskal−Wallis test showed a significant difference in BDNF between the different BMI categories, χ2(2) = 24.201, p < 0.001. Our data also showed that BDNF levels were significantly lower in people with obesity classes II and III than those of normal weight (p < 0.05). The Spearman rank correlation test was statistically significant with negative correlations between the BMI and BDNF (r) = −0.478, (p < 0.01). Moreover, we observed a negative dose-dependent relationship pattern between BMI categories and the levels of circulating BDNF protein. Conclusions: In this study, our data support the hypothesis that low serum levels of BDNF are associated with high BMI and obesity in Saudi adults.
Collapse
|
7
|
Sher L, Bierer LM, Flory J, Makotkine I, Yehuda R. Brain-derived neurotrophic factor in war veterans with or without a history of suicide attempt. J Affect Disord 2022; 308:160-165. [PMID: 35427710 DOI: 10.1016/j.jad.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) plays a central role in brain development and plasticity and has been demonstrated to be altered in neuropsychiatric diseases and suicidal behavior. We examined whether there is a difference with regard to plasma BDNF levels between veterans who made or did not make a suicide attempt post-deployment. METHODS Combat veterans who made or did not make post-deployment suicide attempts were interviewed using Mini-International Neuropsychiatric Interview, the Montgomery-Åsberg Depression Rating Scale, the Barratt Impulsivity Scale (BIS) and the Scale for Suicidal Ideation (SSI). Reaction to the most recent suicide attempt was evaluated using item 16 of the Suicide Intent Scale. Plasma BDNF levels were determined by the BDNF ELISA kit. RESULTS Controlling for age and body-mass index (BMI), BDNF levels were higher among suicide attempters than non-attempters. We observed a positive correlation between BDNF levels and SSI scores among non-attempters but not among attempters. BDNF levels positively correlated with BIS scores among suicide attempters but not among non-attempters. Suicide attempters who regretted that they made a suicide attempt had significantly higher BDNF levels in comparison to attempters who did not regret their attempts, controlling or not controlling for age and BMI. LIMITATIONS A modest sample size is a shortcoming of our study. CONCLUSIONS Our study demonstrates that BDNF may be involved in the pathophysiology of suicidal behavior in combat veterans. Given the relative ease of measuring plasma BDNF levels, it may be appropriate to consider adding such assessments to studies of suicidal behavior.
Collapse
Affiliation(s)
- Leo Sher
- James J. Peters Veterans' Administration Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Linda M Bierer
- James J. Peters Veterans' Administration Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janine Flory
- James J. Peters Veterans' Administration Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iouri Makotkine
- James J. Peters Veterans' Administration Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans' Administration Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Selvaraju V, Babu JR, Geetha T. Salivary Neurotrophins Brain-Derived Neurotrophic Factor and Nerve Growth Factor Associated with Childhood Obesity: A Multiplex Magnetic Luminescence Analysis. Diagnostics (Basel) 2022; 12:diagnostics12051130. [PMID: 35626286 PMCID: PMC9140051 DOI: 10.3390/diagnostics12051130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is linked with higher inflammatory markers and is characterized by chronic low-grade inflammation. Neurotrophins brain-derived neurotrophic factor (BDNF) and β-nerve growth factor (β-NGF), in addition to their neuronal functions, act on several immune cells and have been recently designated as metabokines due to their regulatory role in energy homeostasis and food intake. The current study evaluates the salivary BDNF and β-NGF and their association with anthropometric measurement, blood pressure, and salivary insulin in children. Anthropometric measurements and saliva samples were obtained from 76 children, aged 6–10 years. Multiplex analysis was carried out for the salivary analysis of BDNF, NGF, and insulin by human magnetic Luminex performance assay. Statistical analysis was performed to analyze the best fit diagnostic value for biomarkers and the relationship of the neurotrophic levels of BDNF and NGF with obesity measures and blood pressure. Salivary BDNF and β-NGF showed a significantly higher concentration in obese children than normal-weight children. Both neurotrophins are positively associated with obesity anthropometric measures, blood pressure, and salivary insulin. Multinominal regression analysis reported a significant association between salivary BDNF, β-NGF, insulin, and systolic pressure adjusted for age, gender, income, and maternal education. The salivary concentration of BDNF and NGF was higher in obese children, and it is positively associated with anthropometric measures, suggesting that neurotrophins can be used as a non-invasive predictor of obesity-related complications in children.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
| | - Jeganathan R. Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (V.S.); (J.R.B.)
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-844-7418
| |
Collapse
|
9
|
Raharjo S, Pranoto A, Rejeki PS, Harisman ASM, Pamungkas YP, Andiana O. Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND: Obesity has been widely associated with structural and functional changes in the brain, whereas inflammation is one of the potential mechanisms involved in these changes.
OBJECTIVE: This study aims to prove the relationship between serum brain-derived neurotrophic factor (BDNF) levels and obesity predictor markers (body mass index and waist to hip ratio) and inflammation (interleukin-6 and Tumor Necrosis Factor-alpha) levels in females with obesity.
METHODS: This study used a cross-sectional study method using 33 females with obesity aged 19-23 years, body mass index (BMI) > 27.5 kg/m2, normal blood pressure, normal resting heart rate (RHR), normal hemoglobin (Hb), and fasting blood glucose (FBG) ≤ 100 mg/dL. The examination of serum BDNF, IL-6, and TNF-α levels using the Enzyme-Linked Immunosorbent Assay (ELISA) method. The data were analyzed using Pearson product-moment test with a significant levels p<0.05.
RESULTS: The results indicated that there is a negative correlation between serum BDNF levels and BMI (r = –0.759; p<0.001), WHR (r = –0.675; p<0.001), IL-6 levels (r = –0.530; p<0.001) and TNF-α levels (r = –0.561; p<0.001).
CONCLUSION: Based on the results of the study, there is a negative correlation between serum BDNF levels and BMI, waist to hip ratio, and inflammation (interleukin-6 and Tumor Necrosis Factor-alpha) levels in females with obesity. Further studies are needed to confirm the present findings.
Collapse
|
10
|
Beltrán-Velasco AI, Donoso-González M, Clemente-Suárez VJ. Analysis of perceptual, psychological, and behavioral factors that affect the academic performance of education university students. Physiol Behav 2021; 238:113497. [PMID: 34126111 DOI: 10.1016/j.physbeh.2021.113497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
The aim of this study was the effect of different perceptual, psychological, and behavioural factors in the academic performance of university students. A total of 172 students (23.5 ± 5.4 years) were recruited. Physical activity patterns, nutritional habits, personality factors, perceptions of difficulty, expected grade, grade average, and academic performance of students were analyzed. No significant differences were found in physical activity levels in relation to academic performance. Significant differences were found in the agreeableness domain in relation to higher academic performance, higher perception of healthy diet and higher body mass index values. With these results we can conclude that university student with higher academic performance were characterized by higher levels of agreeableness, perception of healthy diet and body mass index.
Collapse
Affiliation(s)
- Ana Isabel Beltrán-Velasco
- Applied Psychophysiological Research Group, European University of Madrid, Spain; Universidad Antonio de Nebrija, Education Department, Madrid, Spain
| | | | - Vicente Javier Clemente-Suárez
- Applied Psychophysiological Research Group, European University of Madrid, Spain; Universidad Europea de Madrid, Faculty of Sport Science, Spain; Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla, Colombia
| |
Collapse
|
11
|
Alkan I, Altunkaynak BZ, Gültekin Gİ, Bayçu C. Hippocampal neural cell loss in high-fat diet-induced obese rats-exploring the protein networks, ultrastructure, biochemical and bioinformatical markers. J Chem Neuroanat 2021; 114:101947. [PMID: 33766576 DOI: 10.1016/j.jchemneu.2021.101947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity, which has become one of the main health problems, results from irregular and unhealthy nutrition. In particular, an increase in the intake of high-fat foods leads to obesity and associated disorders. It is noteworthy to specify that obese individuals have memory problems. This study aims to examine the effects of high-fat diet on hippocampus, with stereological, histopathological methods and STRING bioinformatic tool. METHODS Female Adult Sprague Dawley rats (n = 20) were equally divided into control (CONT) and high-fat diet (HFD) groups. The control group was given standard rat pellet feed, while the high-fat diet group was fed with a 40 % fat content for 2 months. Following the feeding program, rats were sacrificed. The collected blood samples were analyzed biochemically to determine the level of oxidative stress while performing a stereological and histopathological examination of the brain tissues. Functional protein-protein networks for BDNF, C-Fos, CAT, LPO, SOD and MPO by gene ontology (GO) enrichment analysis were evaluated. FINDINGS The number of neurons decreased in the HFD group compared to the CONT group. Damage to the histological structure of the hippocampus region; such as degenerate neurons, damaged mitochondria and extended cisterns of the endoplasmic reticulum was observed. Although C-Fos level and oxidative stress parameters increased in HFD group, BDNF level decreased. While BDNF and C-Fos were observed in pathways related to neuron death, oxidative stress and memory, BDNF was pronounced in the mitochondria, and C-Fos in the endoplasmic reticulum. DISCUSSION This study shows that changes in both BDNF and C-Fos levels in obesity due to high-fat diet increase oxidative stress and cause neuron damage in the hippocampus.
Collapse
Affiliation(s)
- Işınsu Alkan
- Dept of Basic Medical Sciences, Dentistry Faculty, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Berrin Zuhal Altunkaynak
- Depts of Histology and Embryology and Physiology Departments, Medical Faculty, Istanbul Okan University, İstanbul, Turkey.
| | - Güldal İnal Gültekin
- Physiology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| | - Cengiz Bayçu
- Histology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| |
Collapse
|