1
|
Liu W, Wang Y, Qiu H, Chen D, Wu S, Ji Q, Chang B, Li Y, Zhao H, Tan Y, Gu Y. Long-term ultraviolet B irradiation at 297 nm with light-emitting diode improves bone health via vitamin D regulation. BIOMEDICAL OPTICS EXPRESS 2024; 15:4081-4100. [PMID: 39022556 PMCID: PMC11249673 DOI: 10.1364/boe.520348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024]
Abstract
Ultraviolet radiation is the primary determinant for vitamin D synthesis. Sunlight is inefficient and poses a risk, particularly for long-term exposure. In this study, we screened the most favorable wavelength for vitamin D synthesis among four types of narrowband light-emitting diodes (LEDs) and then irradiated osteoporosis rats with the optimal wavelength for 3-12 months. The 297 nm narrowband LED was the most efficient. Long-term radiation increased vitamin D levels in all osteoporotic rats and improved bone health. No skin damage was observed during irradiation. Our findings provide an efficient and safe method of vitamin D supplementation.
Collapse
Affiliation(s)
- Wenwen Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Wang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shengnan Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Quanbo Ji
- Department of Orthopaedics, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Biao Chang
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunqi Li
- Department of Gastroenterology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yizhou Tan
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Gu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Wunderlich S, Griffiths T, Baines F. UVB-emitting LEDs for reptile lighting: Identifying the risks of nonsolar UV spectra. Zoo Biol 2024; 43:61-74. [PMID: 37870081 DOI: 10.1002/zoo.21806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
UVB lamps are used to provide reptiles housed indoors with the UV radiation necessary to synthesize vitamin D3 in their skin. Since 2019, UVB-LED lamps have been on sale for use in reptile husbandry. We performed spectral analysis and mapped the UV irradiance for 18 of these lamps. The positive benefits of UVB-LED lamps over traditional products include greater energy efficiency, freedom from mercury and easy installation without external ballasts. However, the spectra of all the UVB-LED lamps tested had little similarity to the solar UV spectrum. Some lamps emitted short-wavelength, non-terrestrial, radiation known to cause acute photo-kerato-conjunctivitis; we report one case. All lamps were lacking significant output in the range 315-335 nm, essential for natural self-regulation of cutaneous vitamin D3 synthesis, preventing overproduction. We describe a possible risk of serious hypervitaminosis D based on our spectral analysis. We call for long-term animal studies to assess this risk, in which the reptiles under these lamps are exposed to species-appropriate UV index levels according to their Ferguson Zone allocation and serum levels of vitamin D3 and 25(OH)D3 monitored. Spectral modifications of the lamps to make the spectrum more like sunlight may be an essential way of mitigating this risk.
Collapse
|
3
|
Dey DK, Chang SN, Gu JY, Kim KM, Lee JJ, Kim TH, Kang SC. Ultraviolet B-irradiated mushroom supplementation increased the Ca ++ uptake and ameliorated the LPS-induced inflammatory responses in zebrafish larvae. J Food Biochem 2021; 45:e13742. [PMID: 33931887 DOI: 10.1111/jfbc.13742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
The harmful effects of excessive ultraviolet (UV) exposure are well known. However, moderate exposure to UV radiation is beneficial and required for active vitamin D synthesis in our body. People living in the coldest regions on the earth are unable to expose their skin to the solar UV radiation and, therefore, additional supplementation of Vitamin D2 is recommended. Mushrooms are one such consumable macrofungi, which has high vitamin content and therefore used in various traditional medicines. Particularly, UVB-irradiated mushrooms are rich in active vitamin D content and that is why recommended to include in the daily diets for the patients suffering from the problems associated with bone mineralization. In the present study, we evaluated the cytotoxic effect of mushroom extract (UVB-ME) (Lentinus edodes) treatment against MG-63 cells, HepG2 cells, and CCD 841 CoN cells. Furthermore, we elucidated the potential of UVB-ME on Ca++ uptake in osteoblast-like MG-63 cells. Next, we validated the response of Ca++ uptake on the growth and development of zebrafish larvae. In addition, the anti-inflammatory and immunomodulatory potential of UVB-ME treatment against lipopolysaccharide-induced inflammatory response was also analyzed in vivo. Collectively, the study suggested that dietary supplementation of UVB-irradiated mushroom is beneficial for bone calcification and could modulate the host immune system.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | | | - Ji Ye Gu
- Department of Pharmaceutical Science and Technology, Kyungsung University, Busan, Republic of Korea
| | - Kang Min Kim
- Department of Pharmaceutical Science and Technology, Kyungsung University, Busan, Republic of Korea
| | | | - Tae Hee Kim
- Naturetech Co. Ltd., Chungbuk, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Ochiai S, Nishida Y, Higuchi Y, Morita D, Makida K, Seki T, Ikuta K, Imagama S. Short-range UV-LED irradiation in postmenopausal osteoporosis using ovariectomized mice. Sci Rep 2021; 11:7875. [PMID: 33846386 PMCID: PMC8042119 DOI: 10.1038/s41598-021-86730-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
Postmenopausal osteoporosis is crucial condition that reduces the QOL of affected patients just like aged type osteoporosis. The aim of this study was to evaluate the effectiveness of short-range UV-LED irradiation in postmenopausal osteoporosis using ovariectomized mice. Preliminary experiments identified the time of onset of osteoporosis after ovariectomy (8 weeks) in our model. We have set up a total of 4 groups (n = 8/group); vitamin D-repletion with UV irradiation (Vit.D+UV+), vitamin D-repletion without UV irradiation (Vit.D+UV−), vitamin D-deficiency with UV irradiation (Vit.D-UV+), vitamin D-deficiency without UV irradiation (Vit.D-UV−), and. From 8 weeks after ovariectomy, UV was irradiated for 24 weeks. At the time of 16 and 24 weeks’ irradiation, serum Vit.D levels, various markers of bone metabolism, bone mineral density, and bone strength were evaluated, and histological analyses were performed. In addition, muscle strength was analyzed. Serum 25-hydroxyvitamin D [25 (OH) D] levels at 40 and 48 weeks of age were increased in the Vit.D-UV+ group compared to the Vit.D-UV−group. Cortical thickness evaluated with micro-CT and strength of bone were significantly higher in Vit.D-UV+ group than those in Vit.D-UV− group. There was no difference in muscle strength between Vit.D-UV+ group and Vit.D-UV− group. No obvious adverse effects were observed in UV-irradiated mice including skin findings. Short-range UV irradiation may ameliorate postmenopausal osteoporosis associated with a state of vitamin D deficiency.
Collapse
Affiliation(s)
- Satoshi Ochiai
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nishida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Rehabilitation Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yoshitoshi Higuchi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daigo Morita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Makida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Seki
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Ikuta
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genome Center, Nagoya University Hospital, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Lu Y, Yang J, Dong C, Fu Y, Liu H. Gut microbiome-mediated changes in bone metabolism upon infrared light exposure in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112156. [PMID: 33647735 DOI: 10.1016/j.jphotobiol.2021.112156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/25/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Adequate sunlight exposure helps reduce bone loss and is important to bone health. Currently, about 90% of the world population spends a major portion of daily life under artificial lighting. Unlike sunlight, LED white light, the main source of artificial lighting, has no infrared radiation, which is known to be beneficial to human health. In artificial lighting environments, infrared supplementation may be used to simulate the effects of sunlight on bone metabolism. Here, we supplemented white LED exposure with infrared light in normal and ovariectomized rats for three consecutive months and examined bone turnover, bone mass, and bone density. We also analyzed the structure and function of gut microbiota in the rats. Infrared supplementation significantly reduced the abundance of Saccharibacteria and increased the abundance of Clostridiaceae 1 and Erysipelotrichaceae bacteria. Our results indicate that changes in the gut microbiome correlate well with bone mass and bone metabolism. Our work demonstrates that infrared supplementation can have a positive effect on rat bone metabolism by affecting gut microbiota. Our findings will be important considerations in the future design of healthy lighting environments that prevent or possibly ameliorate osteoporosis.
Collapse
Affiliation(s)
- Yueying Lu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| | - Jianlou Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China
| | - Chen Dong
- Laboratory of Sport Nutrition and Intelligent Cooking, Shandong Sport University, Jinan 250102,China.
| | - Yuming Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| | - Hong Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing 100191, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
6
|
Low energy irradiation of narrow-range UV-LED prevents osteosarcopenia associated with vitamin D deficiency in senescence-accelerated mouse prone 6. Sci Rep 2020; 10:11892. [PMID: 32681041 PMCID: PMC7368004 DOI: 10.1038/s41598-020-68641-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Deficiency of vitamin D is an important cause of osteosarcopenia. The purpose of this study is to examine the effects of low energy narrow-range UV-LED on osteosarcopenia in animal models of senescence-accelerated mouse prone 6 (SAMP6). Preliminary experiments specified the minimum irradiance intensity and dose efficacy for vitamin D production (316 nm, 0.16 mW/cm2, 1,000 J/m2). we set a total of 4 groups (n = 8 per group); vitamin D-repletion without UV irradiation (Vit.D+UV-), vitamin D-repletion with UV irradiation (Vit.D+UV +), vitamin D-deficiency without UV irradiation, (Vit.D-UV-), and vitamin D-deficiency with UV irradiation (Vit.D-UV +). Serum levels of 25(OH)D at 28 and 36 weeks of age were increased in Vit.D-UV+ group as compared with Vit.D-UV- group. Trabecular bone mineral density on micro-CT was higher in Vit.D-UV+ group than in Vit.D-UV- group at 36 weeks of age. In the histological assay, fewer osteoclasts were observed in Vit.D-UV+ group than in Vit.D-UV- group. Grip strength and muscle mass were higher in Vit.D-UV+ group than in Vit.D-UV- group at 36 weeks of age. Signs of severe damage induced by UV irradiation was not found in skin histology. Low energy narrow-range UV irradiation may improve osteosarcopenia associated with vitamin D deficiency in SAMP6.
Collapse
|