1
|
Khodadad N, Hashempour A, Akbarinia S. In silico analysis of human herpes virus-8 genome: a comparison of the K1, VR1, and VR2 regions for genotyping and global geographical distribution. Sci Rep 2025; 15:326. [PMID: 39747627 PMCID: PMC11696107 DOI: 10.1038/s41598-024-84376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Investigations of the K1 gene revealed six main genotypes clustered according to geography. Here, the global distribution and HHV8 genotyping using the K1 gene and two hypervariable regions (VR1 and VR2) were evaluated. We searched GenBank for 6,889 HHV8-K1 genes via various keywords, selecting sequences longer than 730 bp. Afterwards, the VR1 and VR2 regions were derived from the K1 genes, and genotyping of the K1, VR1, and VR2 sequences was performed by applying phylogenetic tree and BioAfrica methods. The K1 genotyping result was most similar to that of VR1, followed by VR2. The most common genotypes and subtypes in the three regions studied were A (A2) and C (C3), which are found in Africa, America, and Asia. Although the A and C genotypes are more predominant, the other genotypes, B, D, E, and F, are more ancient and are commonly found in America, Asia, and Oceania. K1 is commonly used for HHV8 genotyping, but VR1 can be a reliable alternative when long-term PCR amplification is not possible. The genotyping and subtyping results of both methods were very similar (92%), and it can be inferred that both procedures can be applied for HHV-8 genotyping.
Collapse
Affiliation(s)
- Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shokufeh Akbarinia
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Hashempour A, Khodadad N, Bemani P, Ghasemi Y, Akbarinia S, Bordbari R, Tabatabaei AH, Falahi S. Design of multivalent-epitope vaccine models directed toward the world's population against HIV-Gag polyprotein: Reverse vaccinology and immunoinformatics. PLoS One 2024; 19:e0306559. [PMID: 39331650 PMCID: PMC11432917 DOI: 10.1371/journal.pone.0306559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 09/29/2024] Open
Abstract
Significant progress has been made in HIV-1 research; however, researchers have not yet achieved the objective of eradicating HIV-1 infection. Accordingly, in this study, eucaryotic and procaryotic in silico vaccines were developed for HIV-Gag polyproteins from 100 major HIV subtypes and CRFs using immunoinformatic techniques to simulate immune responses in mice and humans. The epitopes located in the conserved domains of the Gag polyprotein were evaluated for allergenicity, antigenicity, immunogenicity, toxicity, homology, topology, and IFN-γ induction. Adjuvants, linkers, CTLs, HTLs, and BCL epitopes were incorporated into the vaccine models. Strong binding affinities were detected between HLA/MHC alleles, TLR-2, TLR-3, TLR-4, TLR-7, and TLR-9, and vaccine models. Immunological simulation showed that innate and adaptive immune cells elicited active and consistent responses. The human vaccine model was matched with approximately 93.91% of the human population. The strong binding of the vaccine to MHC/HLA and TLR molecules was confirmed through molecular dynamic stimulation. Codon optimization ensured the successful translation of the designed constructs into human cells and E. coli hosts. We believe that the HIV-1 Gag vaccine formulated in our research can reduce the challenges faced in developing an HIV-1 vaccine. Nevertheless, experimental verification is necessary to confirm the effectiveness of these vaccines in these models.
Collapse
Affiliation(s)
- Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shokufeh Akbarinia
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bordbari
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Tabatabaei
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahab Falahi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Ghassabi F, Hashempour A, Dehghani B, Hasanshahi Z, Khodadad N, Behizadeh F, Davarpanah MA. Frequency of Fusion Inhibitor Resistance Mutations Among Therapy-Naïve HIV Patients. AIDS Res Hum Retroviruses 2024; 40:471-481. [PMID: 38553905 DOI: 10.1089/aid.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Glycoprotein 41 (gp41) of the human immunodeficiency virus type 1 (HIV-1) protein plays a critical role in membrane fusion. Gp41 binds to proteins in the plasma membrane of CD4+ T cells, particularly the T-cell antigen receptor (TCR). These findings indicate that gp41 is involved in the assembly of HIV-1 at the plasma membrane of T cells and affects the stimulation of the TCR. To control HIV-1, new inhibitors were introduced to target the gp41 protein. However, mutations in this region might reduce their efficacy. The Gp41 region was amplified from the sera of 30 patients using nested polymerase chain reaction. The sequences were analyzed by bioinformatics tools to identify mutations and gp41 structural features. Subtyping and the interaction between fusion inhibitors and gp41 proteins were also examined. As the first report from Iran, docking analysis between fusion inhibitors and Iranian gp41 proteins showed that mutations in gp41 could not reduce the efficacy of the fusion inhibitors. Most of the patients were infected with CRF35-AD. Several post-modification positions, including glycosylation and phosphorylation sites, were identified in the gp41 protein. Our findings revealed no known multinational drug resistance to gp41 inhibitors; thus, fusion inhibitors can effectively inhibit HIV in Iranian patients. In addition, the present study introduced a new gp41 region (36-44 aa), which considerably influences the interactions between gp41 inhibitors and the gp41 protein. This region may play a pivotal role in suppressing gp41 inhibitors in CFR35-AD. Furthermore, gp41 can be considered a good target for subtyping analysis via the phylogenetic method.
Collapse
Affiliation(s)
- Farzaneh Ghassabi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Behizadeh
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Phinius BB, Choga WT, Anderson M, Mokomane M, Gobe I, Ratsoma T, Phakedi B, Mpebe G, Bhebhe L, Gaolathe T, Mosepele M, Makhema J, Shapiro R, Lockman S, Musonda R, Moyo S, Gaseitsiwe S. Molecular Characterization of Hepatitis B Virus in People Living with HIV in Rural and Peri-Urban Communities in Botswana. Biomedicines 2024; 12:1561. [PMID: 39062134 PMCID: PMC11275055 DOI: 10.3390/biomedicines12071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Hepatitis B virus (HBV) sequencing data are important for monitoring HBV evolution. We aimed to molecularly characterize HBV sequences from participants with HBV surface antigen-positive (HBsAg+) serology and occult hepatitis B infection (OBI+). (2) Methods: We utilized archived plasma samples from people living with human immunodeficiency virus (PLWH) in Botswana. HBV DNA was sequenced, genotyped and analyzed for mutations. We compared mutations from study sequences to those from previously generated HBV sequences in Botswana. The impact of OBI-associated mutations on protein function was assessed using the Protein Variation Effect Analyzer. (3) Results: Sequencing success was higher in HBsAg+ than in OBI+ samples [86/128 (67.2%) vs. 21/71 (29.2%)]. Overall, 93.5% (100/107) of sequences were genotype A1, 2.8% (3/107) were D3 and 3.7% (4/107) were E. We identified 13 escape mutations in 18/90 (20%) sequences with HBsAg coverage, with K122R having the highest frequency. The mutational profile of current sequences differed from previous Botswana HBV sequences, suggesting possible mutational changes over time. Mutations deemed to have an impact on protein function were tpQ6H, surfaceV194A and preCW28L. (4) Conclusions: We characterized HBV sequences from PLWH in Botswana. Escape mutations were prevalent and were not associated with OBI. Longitudinal HBV studies are needed to investigate HBV natural evolution.
Collapse
Affiliation(s)
- Bonolo B. Phinius
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Wonderful T. Choga
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Motswedi Anderson
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Africa Health Research Institute (AHRI), Private Bag X7, Congella, Durban 4013, South Africa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
| | - Tsholofelo Ratsoma
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Basetsana Phakedi
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Gorata Mpebe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Lynnette Bhebhe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
| | - Tendani Gaolathe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB0022, Botswana
| | - Mosepele Mosepele
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Faculty of Medicine, University of Botswana, Gaborone Private Bag UB0022, Botswana
| | - Joseph Makhema
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rosemary Musonda
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag UB0022, Botswana; (M.M.); (I.G.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Private Bag X1, Matieland, Cape Town 7602, South Africa
- School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Gaborone Private Bag BO320, Botswana; (B.B.P.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
5
|
Sobajo OA, Oguzie JU, Adegboyega B, Eromon P, Happi C, Komolafe I, Folarin O. Detection of Immune Escape and Basal Core Promoter/Precore Gene Mutations in Hepatitis B Virus Isolated from Asymptomatic Hospital Attendees in Two Southwestern States in Nigeria. Viruses 2023; 15:2188. [PMID: 38005866 PMCID: PMC10674980 DOI: 10.3390/v15112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Several mutations in the surface (S), basal core promoter (BCP), and precore (PC) genes of the hepatitis B virus have been linked to inaccurate diagnosis and the development of immune escape mutants (IEMs) of the infection, which can lead to chronic infection. Understanding the prevalence and spread of these mutations is critical in the global effort to eliminate HBV. Blood samples were collected from 410 people in Osun and Ekiti states, southwest Nigeria, between 2019 and 2021. Participants were drawn from a group of asymptomatic people who were either blood donors, outpatients, or antenatal patients with no record of HBV infection at the medical outpatients' unit of the hospital. DNA was extracted from plasma using a Qiagen DNEasy kit, followed by nested PCR targeting HBV S and BCP/PC genes. The Sanger sequencing method was used to sequence the positive PCR amplicons, which were further analyzed for IEMs, BCP, and PC mutations. HBV-DNA was detected in 12.4% (51/410) of individuals. After DNA amplification and purification, 47.1% (24) of the S gene and 76.5% (39) of the BCP/PC gene amplicons were successfully sequenced. Phylogenetic analysis showed that all the HBV sequences obtained in this study were classified as HBV genotype E. Mutational analysis of the major hydrophilic region (MHR) and a-determinant domain of S gene sequences revealed the presence of three immune escape mutations: two samples harbored a T116N substitution, six samples had heterogenous D144A/N/S/H substitution, and one sample had a G145E substitution, respectively. The BCP/PC region analysis revealed a preponderance of major BCP mutants, with the prevalence of BCP double substitutions ranging from 38.5% (A1762T) to 43.6% (G1764A). Previously reported classical PC mutant variants were observed in high proportion, including G1896A (33.3%) and G1899A (12.8%) mutations. This study confirms the strong presence of HBV genotype E in Nigeria, the ongoing circulation of HBV IEMs, and a high prevalence of BCP/PC mutants in the cohorts. This has implications for diagnosis and vaccine efficacy for efficient management and control of HBV in the country.
Collapse
Affiliation(s)
- Oguntope Adeorike Sobajo
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria or (O.A.S.); (J.U.O.); (C.H.); (I.K.)
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
- Department of Biological Science, College of Sciences, Afe Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria
| | - Judith Uche Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria or (O.A.S.); (J.U.O.); (C.H.); (I.K.)
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
| | - Benjamin Adegboyega
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
| | - Christian Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria or (O.A.S.); (J.U.O.); (C.H.); (I.K.)
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria or (O.A.S.); (J.U.O.); (C.H.); (I.K.)
| | - Onikepe Folarin
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede 232102, Osun State, Nigeria or (O.A.S.); (J.U.O.); (C.H.); (I.K.)
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede 232102, Osun State, Nigeria; (B.A.); (P.E.)
| |
Collapse
|
6
|
Parizad EG, Imani Fooladi AA, Sedighian H, Behzadi E, Amani J, Khosravi A. Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine. Virus Genes 2023:10.1007/s11262-023-01995-z. [PMID: 37140777 DOI: 10.1007/s11262-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 μg/ml of recombinant proteins and 1 μg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb-Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.
Collapse
Affiliation(s)
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
7
|
Molecular and Genetic Characterization of Hepatitis B Virus (HBV) among Saudi Chronically HBV-Infected Individuals. Viruses 2023; 15:v15020458. [PMID: 36851671 PMCID: PMC9964524 DOI: 10.3390/v15020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
The study aimed to characterize the genotype and subgenotypes of HBV circulating in Saudi Arabia, the presence of clinically relevant mutations possibly associated with resistance to antivirals or immune escape phenomena, and the possible impact of mutations in the structural characteristics of HBV polymerase. Plasma samples from 12 Saudi Arabian HBV-infected patients were analyzed using an in-house PCR method and direct sequencing. Saudi patients were infected with mainly subgenotype D1. A number of mutations in the RT gene (correlated to antiviral resistance) and within and outside the major hydrophilic region of the S gene (claimed to influence immunogenicity and be related to immune escape) were observed in almost all patients. Furthermore, the presence of mutations in the S region caused a change in the tertiary structure of the protein compared with the consensus region. Clinical manifestations of HBV infection may change dramatically as a result of viral and host factors: the study of mutations and protein-associated cofactors might define possible aspects relevant for the natural and therapeutic history of HBV infection.
Collapse
|
8
|
Kachwala MJ, Smith CW, Nandu N, Yigit MV. Recombinase amplified CRISPR enhanced chain reaction (RACECAR) for viral genome detection. NANOSCALE 2022; 14:13500-13504. [PMID: 36102688 PMCID: PMC9623498 DOI: 10.1039/d2nr03590a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have developed a 'recombinase amplified CRISPR enhanced chain reaction' (RACECAR) assay that can detect as little as 40 copies of hepatitis B virus (HBV) genome using a benchtop spectrofluorometer. The limit of detection was determined to be 3 copies of HBV genome. The specificity of RACECAR was confirmed against hepatitis A virus (HAV). This assay can detect the genomic targets directly in serum samples without an extraction step. The 4 h-long fluorometric assay was developed by combining three tiers of isothermal amplification processes and can be repurposed for any target of choice. This highly modular reaction setup is an untapped resource that can be incorporated into the front-runners of molecular diagnostics.
Collapse
Affiliation(s)
- Mahera J Kachwala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Christopher W Smith
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| |
Collapse
|
9
|
Gholami Parizad E, Imani Fooladi AA, Sedighian H, Behzadi E, Valizadeh A, Khosravi A. Comparison of Immune Response in Mice Immunized with Recombinant PreS2/S-C18-27 Protein Derived from Hepatitis B Virus with Commercial Vaccine. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:448-460. [PMID: 36532644 PMCID: PMC9745760 DOI: 10.30699/ijp.2022.553785.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2025]
Abstract
BACKGROUND & OBJECTIVE The vaccine available to prevent Hepatitis B virus disease is ineffective in 5% of people due to the use of HBsAg as a weak immunogenic factor. In the present study, PreS2/S fused to C18-27 peptide fragment as an effective antigen and is proposed as a promising vaccine candidate compared with the conventional vaccine prescribed in the vaccination program. METHODS After the synthesis of PreS2/S genes and C18-27 peptide fragment in pET28a, the recombinant protein was confirmed by Western blotting. The efficacy of the PreS2/S-C18-27 protein was compared with the conventional vaccine injected into five groups of rats. Finally, the cytokine level of IF-r, IL-2, IL-4, IL-10, TNF-a, IgG1, and IgG2a were measured using the ELISA method. RESULTS This study showed no significant difference between the recombinant vaccine group and PBS control group in the IF-r test, but there was a significant difference between groups testing IL-2 and IL-10. In addition, the group receiving the recombinant vaccine with CPG adjuvant at a dilution of 1/10 in the IgG total test on days 14 and 45 after the first injection showed a significant difference in comparison with other groups. CONCLUSION This study showed no statistically significant difference between the recombinant protein vaccine group and the conventional vaccine group. The Th1- mediated immune responses obtained from recombinant proteins with and without CPG performed better than conventional vaccines, possibly due to the functional deficiency of the available vaccines.
Collapse
Affiliation(s)
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Azar Valizadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
10
|
Ghasabi F, Hashempour A, Khodadad N, Bemani S, Keshani P, Shekiba MJ, Hasanshahi Z. First report of computational protein-ligand docking to evaluate susceptibility to HIV integrase inhibitors in HIV-infected Iranian patients. Biochem Biophys Rep 2022; 30:101254. [PMID: 35368742 PMCID: PMC8968007 DOI: 10.1016/j.bbrep.2022.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Iran has recently included integrase (INT) inhibitors (INTIs) in the first-line treatment regimen in human immunodeficiency virus (HIV)-infected patients. However, there is no bioinformatics data to elaborate the impact of resistance-associated mutations (RAMs) and naturally occurring polymorphisms (NOPs) on INTIs treatment outcome in Iranian patients. Method In this cross-sectional survey, 850 HIV-1-infected patients enrolled; of them, 78 samples had successful sequencing results for INT gene. Several analyses were performed including docking screening, genotypic resistance, secondary/tertiary structures, post-translational modification (PTM), immune epitopes, etc. Result The average docking energy (E value) of different samples with elvitegravir (EVG) and raltegravir (RAL) was more than other INTIs. Phylogenetic tree analysis and Stanford HIV Subtyping program revealed HIV-1 CRF35-AD was the predominant subtype (94.9%) in our cases; in any event, online subtyping tools confirmed A1 as the most frequent subtype. For the first time, CRF-01B and BF were identified as new subtypes in Iran. Decreased CD4 count was associated with several factors: poor or unstable adherence, naïve treatment, and drug user status. Conclusion As the first bioinformatic report on HIV-integrase from Iran, this study indicates that EVG and RAL are the optimal INTIs in first-line antiretroviral therapy (ART) in Iranian patients. Some conserved motifs and specific amino acids in INT-protein binding sites have characterized that mutation(s) in them may disrupt INT-drugs interaction and cause a significant loss in susceptibility to INTIs. Good adherence, treatment of naïve patients, and monitoring injection drug users are fundamental factors to control HIV infection in Iran effectively.
Collapse
Key Words
- Antiretroviral therapy, ART
- Behavioral Diseases Consultation Center, BDCC
- Bictegravir, BIC
- C-terminal domain, CTD
- CRF35-AD
- Cabotegravir, CBT
- Catalytic core domain, CCD
- Dolutegravir, DTG
- Drug resistance
- Elvitegravir, EVG
- Grand average hydropathy, GRAVY
- HIV
- Human immunodeficiency virus, HIV
- INT, Integrase
- INTIs, Integrase inhibitors (INTIs)
- Injecting drug users, IDUs
- Integrase
- Integrase inhibitors
- Molecular docking
- N-terminal domain, NTD
- Naturally occurring polymorphisms, NOPs
- Post-translational modification, PTM
- Raltegravir, RAL
- Resistance-associated mutations, RAMs
Collapse
Affiliation(s)
- Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Bemani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Keshani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Javad Shekiba
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
|
12
|
Athamneh RY, Arıkan A, Sayan M, Mahafzah A, Sallam M. Variable Proportions of Phylogenetic Clustering and Low Levels of Antiviral Drug Resistance among the Major HBV Sub-Genotypes in the Middle East and North Africa. Pathogens 2021; 10:1333. [PMID: 34684283 PMCID: PMC8540944 DOI: 10.3390/pathogens10101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health threat in the Middle East and North Africa (MENA). Phylogenetic analysis of HBV can be helpful to study the putative transmission links and patterns of inter-country spread of the virus. The objectives of the current study were to analyze the HBV genotype/sub-genotype (SGT) distribution, reverse transcriptase (RT), and surface (S) gene mutations and to investigate the domestic transmission of HBV in the MENA. All HBV molecular sequences collected in the MENA were retrieved from GenBank as of 30 April 2021. Determination of genotypes/SGT, RT, and S mutations were based on the Geno2pheno (hbv) 2.0 online tool. For the most prevalent HBV SGTs, maximum likelihood phylogenetic analysis was conducted to identify the putative phylogenetic clusters, with approximate Shimodaira-Hasegawa-like likelihood ratio test values ≥ 0.90, and genetic distance cut-off values ≤ 0.025 substitutions/site as implemented in Cluster Picker. The total number of HBV sequences used for genotype/SGT determination was 4352 that represented a total of 20 MENA countries, with a majority from Iran (n = 2103, 48.3%), Saudi Arabia (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267, 6.1%). Genotype D dominated infections in the MENA (86.6%), followed by genotype A (4.1%), with SGT D1 as the most common in 14 MENA countries and SGT D7 dominance in the Maghreb. The highest prevalence of antiviral drug resistance was observed against lamivudine (4.5%) and telbivudine (4.3%). The proportion of domestic phylogenetic clustering was the highest for SGT D7 (61.9%), followed by SGT D2 (28.2%) and genotype E (25.7%). The largest fraction of domestic clusters with evidence of inter-country spread within the MENA was seen in SGT D7 (81.3%). Small networks (containing 3-14 sequences) dominated among domestic phylogenetic clusters. Specific patterns of HBV genetic diversity were seen in the MENA with SGT D1 dominance in the Levant, Iran, and Turkey; SGT D7 dominance in the Maghreb; and extensive diversity in Saudi Arabia and Egypt. A low prevalence of lamivudine, telbivudine, and entecavir drug resistance was observed in the region, with almost an absence of resistance to tenofovir and adefovir. Variable proportions of phylogenetic clustering indicated prominent domestic transmission of SGT D7 (particularly in the Maghreb) and relatively high levels of virus mobility in SGT D1.
Collapse
Affiliation(s)
- Rabaa Y. Athamneh
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
| | - Ayşe Arıkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus; (R.Y.A.); (A.A.)
- DESAM, Near East University, Nicosia 99138, Cyprus;
| | - Murat Sayan
- DESAM, Near East University, Nicosia 99138, Cyprus;
- Clinical Laboratory, PCR Unit, Faculty of Medicine, Kocaeli University, İzmit 41380, Turkey
| | - Azmi Mahafzah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, the University of Jordan, Amman 11942, Jordan;
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, 22184 Malmö, Sweden
| |
Collapse
|
13
|
Khodadad N, Seyedian SS, Haghighi SB, Makvandi M. Molecular characterization and phylogenetic analyses of full-length viral genomes from Iranian patients with chronic hepatitis B virus. Future Virol 2021. [DOI: 10.2217/fvl-2020-0422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aim: Chronic hepatitis B infection is the main cause of liver complications such as hepatic failure, liver cirrhosis and hepatocellular carcinoma (HCC). In this study, we attempted to evaluate molecular characterization and phylogenetic analyses of full-length viral genomes from chronic hepatitis B virus (HBV)-infected patients. Methods: The full-length genomic sequence of the five HBV isolates from Ahvaz (city of Iran) patients was amplified, cloned in pTZ57R/T vector, sequenced and examined. Results: Phylogenetic analyses showed that all isolates belonged to genotype D (D1/D3). Serotyper tool identified ayw2 serotype in all HBV isolates. YMDE mutation was detected in an HBV isolate in the reverse transcriptase domain. Conclusion: In the present study, the analyses of full-length sequence of genome revealed that the HBV genotype D, sub-genotype D1/D3, and subtype ayw2 were predominant among Ahvaz HBV strains. As HBV genome replicates and is mediated via reverse transcription process, periodic investigations of full HBV genome are needed.
Collapse
Affiliation(s)
- Nastaran Khodadad
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Saeed Seyedian
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Biparva Haghighi
- Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
rt269I Type of Hepatitis B Virus (HBV) Polymerase versus rt269L Is More Prone to Mutations within HBV Genome in Chronic Patients Infected with Genotype C2: Evidence from Analysis of Full HBV Genotype C2 Genome. Microorganisms 2021; 9:microorganisms9030601. [PMID: 33803998 PMCID: PMC7999911 DOI: 10.3390/microorganisms9030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/03/2022] Open
Abstract
Recently, it has been reported that the rt269I type of hepatitis B virus (HBV) polymerase (Pol) versus the rt269L type is more significantly related to lower viral replication and HBeAg negative infections in chronic hepatitis B (CHB) patients of genotype C2. In this study, we compared mutation rates within HBV genomes between rt269L and rt269I using a total of 234 HBV genotype C2 full genome sequences randomly selected from the HBV database (115 of rt269L and 119 of rt269I type). When we applied the Benjamini and Hochberg procedure for multiple comparisons, two parameters, dN and d, at the amino acids level in the Pol region were significantly higher in the rt269I type than in the rt269L type. Although it could not reach statistical significance from the Benjamini and Hochberg procedure, nonsynonymous (NS) mutations in the major hydrophilic region (MHR) or “a” determinant in the surface antigens (HBsAg ORF) related to host immune escape or vaccine escape are more frequently generated in rt269I strains than in rt269L. We also found that there are a total of 19 signature single nucleotide polymorphisms (SNPs), of which 2 and 17 nonsynonymous mutation types were specific to rt269L and rt269I, respectively: Of these, most are HBeAg negative infections (preC-W28*, X-V5M and V131I), lowered HBV DNA or virion production (C-I97F/L, rtM204I/V) or preexisting nucleot(s)ide analog resistance (NAr) (rtN139K/H, rtM204I/V and rtI224V) or disease severity (preC-W28*, C-I97F/L, C-Q182K/*, preS2-F141L, S-L213I/S, V/L5M, T36P/S/A, V131I, rtN139K/H, rtM204I/V and rtI224V). In conclusion, our data showed that rt269I types versus rt269L types are more prone to overall genome mutations, particularly in the Pol region and in the MHR or “a” determinant in genotype C2 infections and are more prevalent in signature NS mutations related to lowered HBV DNA replication, HBsAg and HBeAg secretion and potential NAr variants and hepatocellular carcinoma (HCC), possibly via type I interferon (IFN-I)-mediated enhanced inflammation. Our data suggest that rt269L types could contribute to liver disease progression via the generation of immune escape or enhanced persistent infection in chronic patients of genotype C2.
Collapse
|