1
|
Lin J, Wei Q, Fang Z. CircRBM33 competitively binds miR-15a-5p to mediate EZH1 expression to ameliorate sepsis-induced acute lung injury. Clinics (Sao Paulo) 2024; 80:100550. [PMID: 39667201 PMCID: PMC11699051 DOI: 10.1016/j.clinsp.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The study was to investigate circRBM33 in septic acute lung injury (ALI). METHODS Treatment of Murine Lung Epithelial-12 cells (MLE-12) cells was performed using 10 ng/mL Lipopolysaccharide (LPS). circRBM33, miR-15a-5p, and Enhancer of zeste homolog 1 (EZH1) were ascertained through RT-qPCR or Western blot analysis. The viability of MLE-12 cells was measured using the MTT assay, and their rate of apoptosis was ascertained through flow cytometry. B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X (Bax) were determined using Western blot analysis. Oxidative stress levels were assessed with ELISA kits, and levels of malondialdehyde(MDA) content, Superoxide Dismutase (SOD) activity, and glutathione (GSH) were detected. Dual luciferase reporter gene and RIP assays verified the targeting link between miR-15a-5p and circRBM33 or EZH1. The role of circRBM33 in ALI in vivo was determined by performing cecum ligation-perforation (CLP) surgery. HE staining, W/D pulmonary edema, and histological damage scores were taken to assess the extent of lung tissue damage. ELISA was performed to determine proinflammatory factors in lung tissue and cells. RESULTS CircRBM33 downregulation ameliorated ALI-induced edema, apoptotic, and inflammatory reactions in mouse lung tissues. In addition, apoptosis and inflammation mediated by LPS in MLE-12 cells were ameliorated by circRBM33 downregulation, whereas miR-15a-5p knockdown or EZH1 elevation eliminated the action of silencing circRBM33. circRBM33 mediated EZH1 expression by competitive adsorption of miR-15a-5p. CONCLUSION CircRBM33 improves ALI in septic mice by targeting the miR-15a-5p/EZH1 axis.
Collapse
Affiliation(s)
- Jinquan Lin
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China; Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China.
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, PR China; Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, PR China
| | - Zhipeng Fang
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China
| |
Collapse
|
2
|
Li M, Lu H, Ruan C, Ke Q, Hu L, Li Z, Liu X. CircMAPK1 induces cell pyroptosis in sepsis-induced lung injury by mediating KDM2B mRNA decay to epigenetically regulate WNK1. Mol Med 2024; 30:155. [PMID: 39300342 DOI: 10.1186/s10020-024-00932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Macrophage pyroptosis is a pivotal inflammatory mechanism in sepsis-induced lung injury, however, the underlying mechanisms remain inadequately elucidated. METHODS Lipopolysaccharides (LPS)/adenosine triphosphate (ATP)-stimulated macrophages and cecal ligation and puncture (CLP)-induced mouse model for sepsis were established. The levels of key molecules were examined by qRT-PCR, Western blotting, immunohistochemistry (IHC) and ELISA assay. The subcellular localization of circMAPK1 was detected by RNA fluorescence in situ hybridization (FISH). Cell viability, LDH release and caspase-1 activity were monitored by CCK-8, LDH assays, and flow cytometry. The bindings between KDM2B/H3K36me2 and WNK1 promoter was detected by chromatin immunoprecipitation (ChIP) assay and luciferase assay, and associations among circMAPK1, UPF1 and KDM2B mRNA were assessed by RNA pull-down or RNA immunoprecipitation (RIP) assays. The pathological injury of lung tissues was evaluated by lung wet/dry weight ratio and hematoxylin and eosin (H&E) staining. RESULTS CircMAPK1 was elevated in patients with septic lung injury. Knockdown of circMAPK1 protected against LPS/ATP-impaired cell viability and macrophage pyroptosis via WNK1/NLRP3 axis. Mechanistically, loss of circMAPK1 enhanced the association between KDM2B and WNK1 promoter to promote the demethylation of WNK1 and increase its expression. CircMAPK1 facilitated KDM2B mRNA decay by recruiting UPF1. Functional experiments showed that silencing of KDM2B or WNK1 counteracted circMAPK1 knockdown-suppressed macrophage pyroptosis. In addition, silencing of circMAPK1 alleviated CLP-induced lung injury in mice via KDM2B/WNK1/NLRP3 axis. CONCLUSION CircMAPK1 exacerbates sepsis-induced lung injury by destabilizing KDM2B mRNA to suppress WNK1 expression, thus facilitating NLRP3-driven macrophage pyroptosis.
Collapse
Affiliation(s)
- Min Li
- Emergency Department of Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, China
- Emergency trauma College of Hainan Medical University, Haikou, 571199, Hainan Province, China
| | - Hanjing Lu
- Emergency trauma College of Hainan Medical University, Haikou, 571199, Hainan Province, China
| | - Chujun Ruan
- Emergency Department of Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, China
| | - Qiao Ke
- Emergency Department of Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, China
| | - Longhui Hu
- Emergency Department of Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, China
| | - Zhao Li
- Emergency trauma College of Hainan Medical University, Haikou, 571199, Hainan Province, China
| | - Xiaoran Liu
- Emergency trauma College of Hainan Medical University, Haikou, 571199, Hainan Province, China.
- The First Affiliated Hospital of Hainan Medical College, Key Laboratory of Emergency and Trauma of Ministry of Education, No.3 Xueyuan Road, Longhua District, Haikou, 571199, Hainan Province, China.
| |
Collapse
|
3
|
Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Sekar M, Meenakshi DU, Singh SK, MacLoughlin R, Dua K. Unwinding circular RNA's role in inflammatory pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2567-2588. [PMID: 37917370 DOI: 10.1007/s00210-023-02809-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
4
|
Gao FF, Chen DQ, Jiang YT, Han CF, Lin BY, Yang Z, Quan JH, Xiong YH, Chen XT. Functional roles of circular RNAs in lung injury. Front Pharmacol 2024; 15:1354806. [PMID: 38601461 PMCID: PMC11004487 DOI: 10.3389/fphar.2024.1354806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 04/12/2024] Open
Abstract
Lung injury leads to respiratory dysfunction, low quality of life, and even life-threatening conditions. Circular RNAs (circRNAs) are endogenous RNAs produced by selective RNA splicing. Studies have reported their involvement in the progression of lung injury. Understanding the roles of circRNAs in lung injury may aid in elucidating the underlying mechanisms and provide new therapeutic targets. Thus, in this review, we aimed to summarize and discuss the characteristics and biological functions of circRNAs, and their roles in lung injury from existing research, to provide a theoretical basis for the use of circRNAs as a diagnostic and therapeutic target for lung injury.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Dian-Qing Chen
- Department of Hand and Foot Surgery, Armed Police Corps Hospital of Hebei, Shijiazhuang, Hebei, China
| | - Yue-Tong Jiang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Fei Han
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bi-Yun Lin
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhan Yang
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Juan-Hua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying-Huan Xiong
- Biotissue Repository, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xin-Tian Chen
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Wang L, Lin Q, Wei B, Guo Y, Li Q, Wang Z, Wu L, Zhang Y, Yin J, Wan B. CircUBR1 knockdown relieves ventilator-induced lung injury through regulating miR-20a-5p/GGPPS1 pathway. Cell Signal 2023; 112:110920. [PMID: 37827345 DOI: 10.1016/j.cellsig.2023.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE To assess the influences and underlying mechanism of circular RNA UBR1 (circUBR1) in ventilator-induced lung injury (VILI). METHODS In mice and mouse alveolar epithelial cells, VILI model was established. CircUBR1 and miR-20a-5p expression was assessed via quantitative real time polymerase chain reaction. Western blot and immunohistochemistry were applied to assess geranylgeranyl diphosphate synthase 1 (GGPPS1) protein expression. In lung tissues, the histopathological changes were utilized using hematoxylin and eosin staining. Cell counting kit-8 assay and flow cytometer were applied to detect cell proliferation and apoptosis. The levels of inflammatory cytokines [interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor (TNF)-α] were measured by western blot and enzyme-linked immunosorbent assay. RESULTS In lung tissues of VILI mice, circUBR1 and GGPPS1 expression were upregulated, while miR-20a-5p expression was downregulated. In vivo, circUBR1 knockdown alleviated lung injury, inhibited cell apoptosis, and decreased the levels of inflammatory cytokines. In cells treated with cyclic stretch (CS), circUBR1 knockdown promoted cell viability, inhibited cell apoptosis, and reduced inflammatory cytokines. CircUBR1 could sponge miR-20a-5p, and GGPPS1 was the target gene of miR-20a-5p. In addition, in cells treated with CS, downregulation of miR-20a-5p or the overexpression of GGPPS1 reversed the promotive effect of circUBR1 knockdown on cell viability and the inhibitive effect of circUBR1 knockdown on cell apoptosis and inflammation production. CONCLUSIONS In VILI, knockdown of circUBR1 attenuated lung injury and inflammation via regulating the miR-20a-5p/GGPPS1 pathway. Our study may provide a potential therapeutic target for treatment of VILI.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Benzhong Wei
- Department of Anesthesiology, Yizheng Hospital, Nanjing Gulou Hospital Group, Yizheng 211900, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Jiangning Yin
- Emergency Department, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China.
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China.
| |
Collapse
|
6
|
Gao P, Duan W, Shi H, Wang Q. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol Res 2023; 39:275-294. [PMID: 37008689 PMCID: PMC10050541 DOI: 10.1007/s43188-022-00169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The apoptosis and inflammation of pulmonary epithelial cells are important pathogenic factors of sepsis-induced acute lung injury (ALI). Upregulation of circPalm2 (circ_0001212) expression levels has been previously detected in the lung tissue of ALI rats. Herein, the biological significance and detailed mechanism of circPalm2 in ALI pathogenesis were investigated. In vivo models of sepsis-induced ALI were established by treating C57BL/6 mice with cecal ligation and puncture (CLP) surgery. Murine pulmonary epithelial cells (MLE-12 cells) were stimulated with lipopolysaccharide (LPS) to establish in vitro septic ALI models. MLE-12 cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry analysis, respectively. The pathological alterations of the lung tissue were analysed based on hematoxylin-eosin (H&E) staining. Cell apoptosis in the lung tissue samples was examined by TUNEL staining assay. LPS administration suppressed the viability and accelerated the inflammation and apoptotic behaviours of MLE-12 cells. CircPalm2 displayed high expression in LPS-stimulated MLE-12 cells and possessed circular characteristics. The silencing of circPalm2 impeded apoptosis and inflammation in LPS-stimulated MLE-12 cells. Mechanistically, circPalm2 bound with miR-376b-3p, which targeted MAP3K1. In rescue assays, MAP3K1 enhancement reversed the repressive effects of circPalm2 depletion on LPS-triggered inflammatory injury and MLE-12 cell apoptosis. Furthermore, the lung tissue collected from CLP model mice displayed low miR-376b-3p expression and high levels of circPalm2 and MAP3K1. CircPalm2 positively regulated MAP3K1 expression by downregulating miR-376b-3p in murine lung tissues. Importantly, circPalm2 knockdown attenuated CLP-induced inflammation, apoptosis, and pathological alterations in lung tissues collected from mice. Silenced circPalm2 inhibits LPS-induced pulmonary epithelial cell dysfunction and mitigates abnormalities in lung tissues collected from CLP-stimulated mice via the miR-376b-3p/MAP3K1 axis in septic ALI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00169-7.
Collapse
Affiliation(s)
- Pengfei Gao
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Department of Anesthesiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu 223300 China
| | - Wenying Duan
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
| | - Huiyan Shi
- Jinzhou Medical University, Jinzhou, Liaoning 121001 China
| | - Qingxiu Wang
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Shanghai East Hopital, Tongji University School of Medicine, Shanghai, 200120 China
| |
Collapse
|
7
|
Gao P, Wu B, Ding Y, Yin B, Gu H. circEXOC5 promotes acute lung injury through the PTBP1/Skp2/Runx2 axis to activate autophagy. Life Sci Alliance 2023; 6:e202201468. [PMID: 36302650 PMCID: PMC9614700 DOI: 10.26508/lsa.202201468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 01/17/2023] Open
Abstract
To understand the pathogenesis of acute lung injury (ALI), we focused on circEXOC5, a significantly up-regulated circular RNA in ALI. Using the in vivo cecal ligation and puncture (CLP)-induced ALI mouse model and in vitro LPS-challenged mouse pulmonary microvascular endothelial cell (MPVEC) model, we examined the impacts of knockdown circEXOC5 on lung injury, inflammation, and autophagy. The regulation between circEXOC5, polypyrimidine tract-binding protein 1 (PTBP1), S-phase kinase-associated protein 2 (Skp2), and Runt-related transcription factor 2 (Runx2) was investigated by combining RNA immunoprecipitation, qRT-PCR, mRNA stability, and ubiquitination assays. The significance of PTBP1 in circEXOC5-induced ALI phenotypes was examined both in vitro and in vivo. circEXOC5 was up-regulated and associated with increased inflammation and activated autophagy in cecal ligation and puncture-induced ALI lung tissues and LPS-challenged MPVECs. Through the interaction with PTBP1, circEXOC5 accelerated Skp2 mRNA decay, an E3 ubiquitin ligase for Runx2, and therefore increased Runx2 expression. Functionally, overexpressing PTBP1 reversed shcircEXOC5-inhibited ALI, inflammation, or autophagy. The signaling cascade circEXOC5/PTBP1/Skp2/Runx2, by essentially regulating inflammation and autophagy in MPVECs, aggravates sepsis-induced ALI.
Collapse
Affiliation(s)
- Pei Gao
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beirong Wu
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Ding
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingru Yin
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoxiang Gu
- Department of Respiratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Zhang J, Zhang Z, Nie X, Liu Y, Qi Y, Wang J. Deregulated RNAs involved in sympathetic regulation of sepsis-induced acute lung injury based on whole transcriptome sequencing. BMC Genomics 2022; 23:836. [PMID: 36526959 PMCID: PMC9758828 DOI: 10.1186/s12864-022-09073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Sympathetic nerves play essential roles in the regulation of lung inflammation, and we investigated the effect of sympathetic denervation (SD) on sepsis-induced acute lung injury (ALI) in mice. Mice were randomized to the control, SD, ALI and SD + ALI, groups. SD and ALI were established through intratracheal 6-hydroxydopamine and intraperitoneal lipopolysaccharide, respectively. Models and gene expressions levels were evaluated by HE staining, ELISA, Western blotting and RT-qPCR. RNA extraction, whole transcriptome sequencing and subsequent biostatistical analysis were performed. Sympathetic denervation in the lungs significantly attenuated lung TNF-ɑ and norepinephrine expression, alleviated sepsis-induced acute lung injury and inhibited NF-κB signaling. Compared with the ALI group, the SD + ALI group exhibited 629 DE circRNAs, 269 DE lncRNAs,7 DE miRNAs and 186 DE mRNAs, respectively. Some DE RNAs were validated by RT-qPCR. CircRNA-miRNA-mRNA regulatory networks in the SD + ALI group revealed enrichment of the B-cell receptor signaling pathway, IL-17 signaling pathway, neuroactive ligand-receptor interaction, CAM, primary immunodeficiency, and cytokine-cytokine receptor interaction terms. The lncRNA-miRNA-mRNA network also revealed inflammation-related signaling pathways. Taken together, based on the successfully established models of SD and ALI, we show here that sympathetic nerves may regulate sepsis-induced ALI supposedly by affecting the expression of circRNAs, lncRNAs, miRNAs, and mRNAs in the lungs. These results may allow for further exploration of the roles of pulmonary sympathetic nerves in sepsis-induced ALI.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Zhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinran Nie
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yingli Liu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Cao J, Kuang D, Luo M, Wang S, Fu C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2022; 617:60-67. [PMID: 35679712 DOI: 10.1016/j.bbrc.2022.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease caused by the severe and acute response of the lungs to a variety of direct and indirect insults. Patients with ALI are currently treated mainly with respiratory support due to inadequate understanding of ALI progression. Alveolar epithelial cells produced thymic stromal lymphopoietin (TSLP) has been proved to worsen ALI by triggering airway inflammation. However, the regulation mechanism of TSLP expression remains unclear. In this study, we identified the crucial role played by circNCLN in lipopolysaccharide (LPS)-induced ALI. We demonstrated for the first time that miR-291a-3p could directly bind to the 3'UTR of TSLP and suppress TSLP expression in alveolar epithelial cells. Mechanistically, our data identified that circNCLN acts as a molecular sponge to antagonize miR-291a-3p and thereby maintaining the expression of TSLP in alveolar epithelial cells. Importantly, targeting circNCLN by its antisense oligonucleotide (ASO) markedly alleviated LPS-induced ALI. Therefore, our results suggested that circNCLN/miR-291a-3p/TSLP axis may be an important signaling in LPS-induced ALI and circNCLN inhibition may serve as a potential treatment of ALI.
Collapse
Affiliation(s)
- Jianwei Cao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Shanzhong Wang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Chunlai Fu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
10
|
Shen MJ, Yan ST, Zhang XY, Li W, Chen X, Zheng XX, Zhang GQ, Sun LC. The circular RNA hsa_circ_0003091 regulates sepsis-induced lung injury by sponging the miR-149/Smad2 axis. Aging (Albany NY) 2022; 14:5059-5074. [PMID: 35700140 PMCID: PMC9271288 DOI: 10.18632/aging.204125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022]
Abstract
Sepsis-induced acute lung injury (ALI) is a severe cause of death. Increasing evidence has identified circular RNAs (circRNAs) acting as critical regulators of human diseases. However, their expression pattern and underlying mechanisms in ALI remain unclear. Herein, we screened the circRNAs of ALI patients and constructed a lung injury murine model using lipopolysaccharides (LPS) induction. Functional analyses of targeted circRNA were performed in vivo and in vitro. Then, the downstream miRNA and mRNA of specific circRNAs were identified. Compared to healthy subjects, 35 circRNAs were upregulated and 9 circRNAs were downregulated in sepsis patients. The top 10 differentially expressed circRNAs were selected for validation and has_circ_0003091 was selected. The ALI mice presented significantly elevated has_circ_0003091 (mmu_circ_0015268). The functional analysis revealed that mmu_circ_0015268 contributed to the pulmonary injury, cell apoptosis, inflammatory responses, and endothelial activation in the ALI murine model. On the other hand, silencing mmu_circ_0015268 showed protective effects in LPS-treated mice and PMVECs. Furthermore, mmu_circ_0015268 sponged miR-149 to upregulate the expression of its target Smad2. In summary, we demonstrated that has_circ_0003091 might be a novel target for the management and treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Mei-Jia Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.,Emergency Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shen-Tao Yan
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Yan Zhang
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen Li
- Surgical Intensive Care Unit (SICU), China-Japan Friendship Hospital, Beijing 100029, China
| | - Xu Chen
- Department of Digestive, Beijing Ditan Hospital Capital Medical University, Beijing 100015, China
| | - Xiao-Xiao Zheng
- Department of Emergency, Peking University People's Hospital (PKUPH), Beijing 100044, China
| | - Guo-Qiang Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.,Emergency Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Chao Sun
- Emergency Department, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
11
|
Guo W, Wang Z, Wang S, Liao X, Qin T. Transcriptome sequencing reveals differential expression of circRNAs in sepsis induced acute respiratory distress syndrome. Life Sci 2021; 278:119566. [PMID: 33957172 DOI: 10.1016/j.lfs.2021.119566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
circRNAs play important roles in regulating gene expression at both transcriptional and post transcriptional levels and involve in a variety of human diseases. But up to now, it is still unclear whether circRNAs are involved in the occurrence and development of sepsis induced acute respiratory distress syndrome (ARDS). In the present research, we collected lung tissues of sepsis induced ARDS patients (n = 3) and brain dead patients without ARDS (n = 3). From the results of genome-wide sequencing, a total of 272 significantly up-regulated and 231 significantly down-regulated circRNAs were obtained. Combining the previous sequencing results in the plasma of ARDS patients, 11 up-regulated and 3 down-regulated circRNAs simultaneously in plasma and lung tissues were identified. Pathway enrichment analysis showed that the co differentially expressed circRNAs might be involved in the regulation of ECM-receptor interaction and adherens junction etc. In conclusion, these data indicates that circRNAs may involve in the progression of sepsis induced ARDS.
Collapse
Affiliation(s)
- Weixin Guo
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Zhonghua Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| | - Shouhong Wang
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Xiaolong Liao
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China.
| | - Tiehe Qin
- Department of Intensive Care, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, NO.106 Zhongshan Road, Guangzhou 510080, China
| |
Collapse
|