1
|
Xia T, Chen A, Zi Y, Zhang Y, Xu Q, Gao Y, Li C. Performance of fish sludge solubilization and phototrophic bioconversion by purple phototrophic bacteria for nutrient recovery in aquaponic system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:105-115. [PMID: 37657283 DOI: 10.1016/j.wasman.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Nutrient recovery from fish sludge in aquaponics is crucial to improve the economic output of a system sustainably and hygienically. Currently, fish sludge is treated using conventional anaerobic and aerobic mineralization, which does not allow the recovery of valuable nutrients in fish wastes. In this study, a two-stage approach (named as solubilization process and phototrophic bioconversion) is proposed to convert fish sludge into mineral nutrients and biomass nutrients using purple phototrophic bacteria (PPB), thereby promoting the growth of plants and fish simultaneously in aquaponics. Anaerobic and aerobic solubilization methods are tested to pretreat the fish sludge, generating substrates for PPB. Anaerobic solubilization yields 2.1 times more soluble chemical oxygen demand (SCOD) and 3.7 times more total volatile fatty acid (t-VFA) from fish sludge compared with aerobic solubilization. The anaerobic solubilization effluent indicates a CODt-VFA/SCOD of 60% and a VFA comprising 13.3% acetate and 49.0% propionate for PPB. The phototrophic bioconversion using anaerobic solubilization effluent under the light-anaerobic condition results in the highest biomass yield (0.94 g CODbiomass/g CODremoved) and the highest PPB dominance (Ectothiorhodospira, 58.7%). The anaerobic solubilization and light-anaerobic phototrophic bioconversion achieves 54.1% of carbon recovery efficiency (CRE) (in terms of COD), as well as 44.8% and 91.3% of nutrient recovery efficiency (NRE) for N and P. A novel multiloop aquaponic system combined with PPB-based nutrient recovery is proposed for the reuse of mineral nutrients and PPB biomass generated from fish sludge.
Collapse
Affiliation(s)
- Tian Xia
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ang Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan 572025, China
| | - Yongxia Zi
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianzhi Xu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan 572025, China.
| |
Collapse
|
2
|
Siddiqui SA, Schulte H, Pleissner D, Schönfelder S, Kvangarsnes K, Dauksas E, Rustad T, Cropotova J, Heinz V, Smetana S. Transformation of Seafood Side-Streams and Residuals into Valuable Products. Foods 2023; 12:422. [PMID: 36673514 PMCID: PMC9857928 DOI: 10.3390/foods12020422] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Seafood processing creates enormous amounts of side-streams. This review deals with the use of seafood side-streams for transformation into valuable products and identifies suitable approaches for making use of it for different purposes. Starting at the stage of catching fish to its selling point, many of the fish parts, such as head, skin, tail, fillet cut-offs, and the viscera, are wasted. These parts are rich in proteins, enzymes, healthy fatty acids such as monounsaturated and polyunsaturated ones, gelatin, and collagen. The valuable biochemical composition makes it worth discussing paths through which seafood side-streams can be turned into valuable products. Drawbacks, as well as challenges of different aquacultures, demonstrate the importance of using the various side-streams to produce valuable compounds to improve economic performance efficiency and sustainability of aquaculture. In this review, conventional and novel utilization approaches, as well as a combination of both, have been identified, which will lead to the development of sustainable production chains and the emergence of new bio-based products in the future.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing, Essigberg 3, 94315 Straubing, Germany
| | - Henning Schulte
- German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
- Osnabrück University of Applied Sciences, Albrechtstraße 30, 49076 Osnabrück, Germany
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany
- Institute for Food and Environmental Research (ILU), Papendorfer Weg 3, 14806 Bad Belzig, Germany
| | - Stephanie Schönfelder
- Institute for Food and Environmental Research (ILU), Papendorfer Weg 3, 14806 Bad Belzig, Germany
| | - Kristine Kvangarsnes
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
| | - Egidijus Dauksas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælandsvei 6/8, Kjemiblokk 3, 163, 7491 Trondheim, Norway
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025 Ålesund, Norway
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| |
Collapse
|
3
|
Topographically Distinguished Microbiome Taxonomy and Stress-Response Genes of Royal Belum Rainforest and Raja Muda Musa Peat Swamp Revealed through Metagenomic Inquisition. Int J Mol Sci 2023; 24:ijms24010872. [PMID: 36614337 PMCID: PMC9821613 DOI: 10.3390/ijms24010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
Collapse
|
4
|
Zhang X, Wei X, Hu X, Yang Y, Chen X, Tian J, Pan T, Ding B. Effects of different concentrations of CO 2 on Scenedesmus obliquus to overcome sludge extract toxicity and accumulate biomass. CHEMOSPHERE 2022; 305:135514. [PMID: 35798159 DOI: 10.1016/j.chemosphere.2022.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of toxic excess sludge as well as high concentrations of carbon dioxide can be produced in coal-gasification industry. Microalgae has huge potential in the use of nutrients, the removal of toxic organic matter in excess sludge and CO2 fixation. At the same time, the cultivation of the microalgae and the accumulation of high-quality biomass are also the key problems of concern. In this study, the growth and biomass synthesis of Scenedesmus obliquus cultured in sludge extract under 0%-15% (v/v) CO2 were investigated. Results indicated that the highest microalgae biomass yield of 1.609 ± 0.012 g/L can be achieved under 15% CO2 on the 30th day. The maximal photochemical efficiency of PSⅡ (Fv/Fm) decreased in the first 12 h and then increased with the culture time, and the decline amplitude decreased with the increase of the CO2 concentration, indicating that CO2 slowed down the toxic inhibition of sludge extract to Scenedesmus obliquus, which was expressed as the down-regulation of p53 signaling pathway and protein A0A383WFI7. Proteomic analysis showed that under high-concentration CO2, the protein interaction network with the protein of photosystem II assembly (A0A383VSL5) as the core protein regulated the growth of Scenedesmus obliquus in terms of energy metabolism and material transportation. On the 4th day, Methyltransf_11 domain-containing protein (A0A383VH03) was up-regulated and promoted lipid synthesis, leading to the accumulation of lipids in Scenedesmus obliquus in the early stage and the increase of polysaccharides in the later stage. Collectively, this study revealed the regulation mechanism of CO2 on toxicity removal and carbon distribution of Scenedesmus obliquus.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao Wei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueyang Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingying Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jinyi Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Pan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Biao Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Aquaculture—Production System and Waste Management for Agriculture Fertilization—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaculture is the fastest growing animal food production sector worldwide and is becoming the main source of aquatic animal foodstuff for human consumption. However, the aquaculture sector has been strongly criticized for its environmental impacts. It can cause discharge and accumulation of residual nutrients in the areas surrounding the production farms. This is because, of the total nutrients supplied to production ponds, only 30% are converted into product, while the rest is usually discharged into the environment to maintain water quality in aquaculture culture systems, thereby altering the physic-chemical characteristics of the receiving water. In contrast, this same accumulation of nutrients is gaining importance within the agricultural sector, as it has been reported that the main nutrients required by plants for their development are found in this aquaculture waste. The purpose of this review article is to indicate the different aquaculture production systems, the waste they generate, as well as the negative effects of their discharge into the environment. Biofiltration and bioremediation processes are mentioned as alternatives for aquaculture waste management. Furthermore, the state of the art in the treatment and utilization of aquaculture waste as a mineral source for agricultural nutrition through biodigestion and biomineralization processes is described. Finally, aquaponics is referred to as a biological production approach that, through efficient use of water and recycling of accumulated organic nutrients in aquaculture systems, can contribute to addressing the goals of sustainable aquaculture development.
Collapse
|
6
|
Malaysian Virgin Soil Extracts as Natural Growth Enhancer for Targeted Green Microalgae Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The microalgae-based industries are trending upwards, particularly as the feed ingredient for aquaculture. Therefore, a sustainable and reasonably priced source of nutrients to support the mass cultivation of microalgae is in great demand. The present study explored the feasibility of using extracts from virgin soil as natural growth-promoting nutrients for the cultivation of Nannochloropsis oculata, Nannochloropsis oceanica, and Chlorella sorokiniana. The extracts were obtained from Bera Lake Forest using five different treatment methods. The greatest retrieval of dissolved organic carbon, total dissolved nitrogen, and total dissolved phosphorus were observed with the autoclave treatment method at 121 °C twice, yielding a respective concentration of 336.56 mg/L, 13.40 mg/L, and 0.14 mg/L, respectively. The highest growth was recorded with Nannochloropsis oculata resulting in an optical density of 0.488 ± 0.009 (×103 cell mL−1), exhibiting 43% and 44% enhanced growth in comparison to Nannochloropsis oceanica and Chlorella sorokiniana, respectively. The specific growth rate (0.114 a ± 0.007 d−1) was the highest for Nannochloropsis oculata when the 24 h-extraction method was used, whereas the utilization of the autoclave 121 °C twice treatment method contributed to the highest specific growth of Nannochloropsis ocenica (0.069 a ± 0.003 d−1) and Chlorella sorokiniana (0.080 a ± 0.001 d−1). Collectively, these findings suggested that the addition of soil extracts which is sustainable and inexpensive promoted the growth of microalgae compared to the control system. A further study investigating the optimum culture conditions for enhanced microalgae growth will be carried out for the mass production of microalgae biomass.
Collapse
|
7
|
The Effectiveness of Soil Extracts from Selangor Peat Swamp and Pristine Forest Soils on the Growth of Green Microalgae sp. FORESTS 2022. [DOI: 10.3390/f13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microalgae are widely utilized in commercial industries. The addition of a modified artificial medium (soil extract) could enhance their growth. Soil extract collected from the Raja Musa peat swamp and mineral soil from the Ayer Hitam Forest Reserve (AHFR), Selangor, Malaysia, were treated using various extraction methods. Carteria radiosa PHG2-A01, Neochloris conjuncta, and Nephrochlamys subsolitaria were grown in microplates at 25 °C, light intensity 33.75 µmol photons m−2s−1 for 9 days. N. conjuncta dominated the growth in 121 °C twice extraction method AFHR samples, with 47.17% increment. The highest concentrations of ammonia and nitrate were detected in the medium with soil extract treated with 121 °C twice extraction method, yielding the concentrations of 2 mg NL−1 and 35 mg NL−1 for ammonia and nitrate of RM soil and 2 mg NL−1 and 2.85 mg NL−1 for the AH soil. These extracts are proved successful as a microalgal growth stimulant, increasing revenue and the need for enriched medium. The high rate of nutrient recovery has the potential to serve as a growth promoter for microalgae.
Collapse
|
8
|
Yaacob NS, Ahmad MF, Kawasaki N, Maniyam MN, Abdullah H, Hashim EF, Sjahrir F, Wan Mohd Zamri WMI, Komatsu K, Kuwahara VS. Kinetics Growth and Recovery of Valuable Nutrients from Selangor Peat Swamp and Pristine Forest Soils Using Different Extraction Methods as Potential Microalgae Growth Enhancers. Molecules 2021; 26:molecules26030653. [PMID: 33513787 PMCID: PMC7866033 DOI: 10.3390/molecules26030653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.
Collapse
Affiliation(s)
- Nor Suhaila Yaacob
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia
- Correspondence: ; Tel.: +60-355223428
| | - Mohd Fadzli Ahmad
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Nobuyuki Kawasaki
- Dainippon Ink and Chemicals DIC Corporation, Central Research Laboratories, 631 Sakado, Sakura, Chiba 285-8668, Japan;
| | - Maegala Nallapan Maniyam
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia
| | - Hasdianty Abdullah
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia; (M.N.M.); (H.A.)
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Emi Fazlina Hashim
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
- Faculty of Education & Graduate School of Engineering, Soka University, 1-236 Tangi-Machi, Hachioji-Shi 192-8577, Japan;
| | - Fridelina Sjahrir
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Wan Muhammad Ikram Wan Mohd Zamri
- Department of Science & Biotechnology, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya 45600, Selangor, Malaysia; (M.F.A.); (E.F.H.); (F.S.); (W.M.I.W.M.Z.)
| | - Kazuhiro Komatsu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan;
| | - Victor S. Kuwahara
- Faculty of Education & Graduate School of Engineering, Soka University, 1-236 Tangi-Machi, Hachioji-Shi 192-8577, Japan;
| |
Collapse
|