1
|
Houngbédji M, Jespersen JS, Wilfrid Padonou S, Jespersen L. Cereal-based fermented foods as microbiota-directed products for improved child nutrition and health in sub-Saharan Africa. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38973125 DOI: 10.1080/10408398.2024.2365342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Several strategies, programs and policies have long been developed and implemented to alleviate child malnutrition in sub-Saharan African countries. However, stunting and wasting still persist at an alarming rate, suggesting that alternative strategies are needed to induce faster progress toward the 2030 SDGs targets of reducing malnutrition. Gut microbiota-directed intervention is now being recognized as an unconventional powerful approach to mitigate malnutrition and improve overall child health. In an African setting, manufactured probiotic and synbiotic foods or supplements may not be successful owing to the non-affordability and high attachment of African populations to their food tradition. This review analyses the potential of indigenous fermented cereal-based products including porridges, doughs, beverages, bread- and yoghurt-like products, to be used as microbiota-directed foods for over 6 months children. The discussion includes relevant strategies to effectively enhance the beneficial effects of these products on gut microbiota composition for improved child health and nutrition in sub-Saharan Africa. Characterization of probiotic features and general safety of food processing in sub-Saharan Africa as well as randomized clinical studies are still lacking to fully ascertain the health effects and suitability of these fermented foods in preventing and treating child malnutrition and diarrhea.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | | | - Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologies des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Cotonou, Benin
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sensory characteristics and flavour profiles of lactic-acid-fermented foods are influenced by lactic acid bacteria (LAB) metabolic activities. The flavour compounds released/produced are directly linked to the sensory characteristics of fermented cereals. African fermented cereals constitute a staple, frequently consumed food group and provide high energy and essential nutrients to many communities on the continent. The flavour and aroma characteristics of fermented cereal products could be correlated with the metabolic pathways of fermenting microorganisms. This report looks at the comprehensive link between LAB-produced flavour metabolites and sensory attributes of African fermented cereals by reviewing previous studies. The evaluation of such data may point to future prospects in the application of flavour compounds derived from African fermented cereals in various food systems and contribute toward the improvement of flavour attributes in existing African fermented cereal products.
Collapse
|
4
|
Effect of Community Nutrition Rehabilitation Using a Multi-Ingredient Flour on the Weight Growth of Moderately Acute Malnourished Children in Benin. Foods 2023; 12:foods12020263. [PMID: 36673355 PMCID: PMC9857984 DOI: 10.3390/foods12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Childhood malnutrition remains a public health problem in Benin. This study aimed to assess the nutritional potential of complementary food resources to accelerate the weight growth of moderately malnourished children hosted in learning and nutritional rehabilitation centers (LNRs) in eight municipalities in Benin. A multi-ingredient infant flour (i.e., FARIFORTI), composed of 35% corn flour (Zea mays), 15% malted sorghum (Sorghum bicolor), 30% soybean (Glycine max), 10% shelled and roasted peanuts (Arachis hypogeaea), 7% baobab pulp (Adansonia digitata), and 2% dried fried fish (Stolothrissa tanganyicae), was tested with 289 moderately malnourished children aged 6 to 59 months, selected in LNR sessions. Children were given the FARIFORTI flour porridge over 12 days (based on LNR protocol) in addition to other dishes based on local food resources. The weight and height of the children were measured at entry and at the end of the LNR sessions. The sensory evaluation indicated that the FARIFORTI flour was well-accepted by mothers (97%) and children (98%). The FARIFORTI porridge provided significantly higher intakes of carbohydrates and iron in children with weight gain compared to children without weight gain.
Collapse
|
5
|
Optimization of nutritional and sensory properties of fermented oat-based composite beverage. Heliyon 2022; 8:e10771. [PMID: 36217468 PMCID: PMC9547211 DOI: 10.1016/j.heliyon.2022.e10771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Oat (Avena sativa) is well-known for its nutritional value and health-promoting properties. There are only a few oat-based value-added products on the market in Ethiopia, and this study attempted to develop a new product that is both nutritionally enhanced and sensory acceptable, therefore, the objective of this study was to optimize the nutritional and sensory properties of a beverage made from oat, lupine (Lupinus albus), stinging nettle (Urtica simensis), and premix. D-optimal mixture experimental design was used to generate 11 runs applying the following constraints: 60–70% toasted oat, 10–25% roasted and soaked de-bittered white lupine, 5–15% boiled stinging nettle leaves, and 10% premix (flour of toasted black cardamom (2.8%), malted wheat (2.8%), pumpkin (2.6%), spiced chili peppers (1.1%), and table salt (0.7%). Statistical model evaluation and optimization were carried out using Minitab 19 software. The nutritional composition of the product was assessed, and results show that increasing the proportion of oat flour in the blend resulted in a significant (p < 0.05) increase in fat, carbohydrate, gross energy, and mineral contents (Fe, Zn). An increase in lupine flour increased crude protein, crude fiber, gross energy, phytate, tannin, oxalate, and antinutrient to mineral molar ratios. In contrast increased in stinging nettle leaf powder increased the ash and beta-carotene contents. Sensory of 11 composite sample beverages and control (90% oat plus 10% premix) were also carried out by 50 untrained panelists. Consequently, eight responses were optimized: protein, fat, Fe, Zn, beta-carotene, taste, appearance, and overall acceptability. The optimal blending ratio obtained was 70% oats, 11.3% lupine, 8.7% stinging nettle flour, and 10.0% premix. The study's findings suggested that the optimal combination of these traditionally processed ingredients in a beverage can be considered a valuable food with the potential to improve diet quality.
Collapse
|
6
|
Akpoghelie PO, Edo GI, Akhayere E. Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Abstract
This study determined the composition of fungal communities and characterized the enriched fungal species in raw and roasted malts via the third-generation PacBio-based full-length single-molecule real-time (SMRT) sequencing of the full-length amplicon of the internal transcribed spacer (ITS) region. In total, one kingdom, six phyla, 23 classes, 56 orders, 120 families, 188 genera, 333 species, and 780 operational taxonomic units (OTUs) were detected with satisfactory sequencing depth and sample size. Wickerhamomyces (56%), Cyberlindnera (15%), Dipodascus (12%), and Candida (6.1%) were characterized as the dominant genera in the raw malts, and Aspergillus (35%), Dipodascus (21%), Wickerhamomyces (11%), and Candida (3.5%) in the roasted malts. Aspergillus proliferans, Aspergillus penicillioides, and Wickerhamomyces anomalus represented the crucial biomarkers causing intergroup differences. Correlation analysis regarding environmental factors indicated that the water activity (aw) of the samples affected the composition of the fungal communities in the malts. In practice, special attention should be paid to the mycotoxin-producing fungi, as well as other fungal genera that are inversely correlated with their growth, to ensure the safe use of malt and its end products. IMPORTANCE Fungal contamination and secondary metabolite accumulation in agricultural products represent a global food safety challenge. Although high-throughput sequencing (HTS) is beneficial for explaining fungal communities, it presents disadvantages, such as short reads, species-level resolution, and uncertain identification. This work represents the first attempt to characterize the fungal community diversity, with a particular focus on mycotoxin-producing fungi, in malt via the third-generation PacBio-based full-length SMRT sequencing of the ITS region, aiming to explore and compare the differences between the fungal communities of raw and roasted malts. The research is beneficial for developing effective biological control and conservation measures, including improving the roasting conditions, monitoring the environmental humidity and aw, and effectively eliminating and degrading fungi in the industry chain according to the diverse fungal communities determined, for the safe use of malts and their end products, such as beers. In addition, the third-generation SMRT sequencing technology allows highly efficient analysis of fungal community diversity in complex matrices, yielding fast, high-resolution long reads at the species level. It can be extended to different research fields, updating modern molecular methodology and bioinformatics databases.
Collapse
|
8
|
Nutritional Quality, Antioxidant, Microstructural and Sensory Properties of Spontaneously Fermented Gluten-Free Finger Millet Biscuits. Foods 2022; 11:foods11091265. [PMID: 35563992 PMCID: PMC9105919 DOI: 10.3390/foods11091265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Finger millet (FM) is a nutritious and gluten-free cereal grain which is rich in dietary fibre, minerals and antioxidant properties, thereby making it an ideal raw material for preparing gluten-free foods for people suffering from celiac disease. Spontaneous fermentation of FM grains has shown improved nutritional and functional properties of its flour and can be used as a functional ingredient for gluten free biscuits. The aim of this study was to determine the effect of spontaneous fermentation (SF) on the nutritional quality, antioxidant, microstructural, and sensory characteristics of gluten-free FM biscuits obtained from light and dark brown FM flours. Results showed that SF decreased ash, crude fibre, and crude fat contents as well as total phenolic and flavonoids contents. Protein content, carbohydrates content, energy values, antioxidant activity (DPPH and FRAP), and mineral content of FM biscuits increased due to SF. The colour properties such as lightness (L*), showed a significant increase as SF period increased in light brown FM biscuits, however dark brown FM biscuits showed no significant difference. The hue angle and colour differences (ΔE) of FM biscuits increased with the increasing period of SF, ranging from 43.20 to 53.76° and from 0.67 to 7.96, respectively. Spontaneous fermentation also decreased physical properties of biscuits such as diameter (4.76 to 4.54 cm), weight (12.77 to 11.99 g), and spread ratio (7.25 to 6.05), while an increase in thickness and hardness was noted. Spontaneous fermentation also induced changes on the microstructure of FM biscuits. Among the fermented biscuits, panelists preferred 24 h gluten-free fermented FM biscuits since they had better sensory properties. Overall, SF enhanced the nutritional value and health promoting compounds of gluten-free FM biscuits.
Collapse
|
9
|
Wang C, Wei S, Jin M, Liu B, Yue M, Wang Y. Integrated Microbiomic and Metabolomic Dynamics of Fermented Corn and Soybean By-Product Mixed Substrate. Front Nutr 2022; 9:831243. [PMID: 35299761 PMCID: PMC8922052 DOI: 10.3389/fnut.2022.831243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/21/2022] [Indexed: 01/26/2023] Open
Abstract
Microbes and their metabolites produced in fermented food have been considered as critical contributors to the quality of the final products, but the comprehensive understanding of the microbiomic and metabolomic dynamics in plant-based food during solid-state fermentation remains unclear. Here, the probiotics of Bacillus subtilis and Enterococcus faecalis were inoculated into corn and defatted soybean to achieve the two-stage solid-state fermentation. A 16S sequencing and liquid chromatography–tandem mass spectrometry were applied to investigate the dynamics of microbiota, metabolites, and their integrated correlations during fermentation. The results showed that the predominant bacteria changed from Streptophyta and Rickettsiales at 0 h to Bacillus and Pseudomonas in aerobic stage and then to Bacillus, Enterococcus, and Pseudomonas in anaerobic stage. In total, 229 notably different metabolites were identified at different fermentation times, and protein degradation, amino acid synthesis, and carbohydrate metabolism were the main metabolic pathways during the fermentation. Notably, phenylalanine metabolism was the most important metabolic pathway in the fermentation process. Further analysis of the correlations among the microbiota, metabolites, and physicochemical characteristics indicated that Bacillus spp. was significantly correlated with amino acids and carbohydrate metabolism in aerobic stage, and Enterococcus spp. was remarkably associated with amino acids metabolism and lactic acid production in the anaerobic stage. The present study provides new insights into the dynamic changes in the metabolism underlying the metabolic and microbial profiles at different fermentation stages, and are expected to be useful for future studies on the quality of fermented plant-based food.
Collapse
Affiliation(s)
- Cheng Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Siyu Wei
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Bojing Liu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Yizhen Wang
| |
Collapse
|
10
|
Yazew T. Therapeutic Food Development from Maize Grains, Pulses, and Cooking Banana Fruits for the Prevention of Severe Acute Malnutrition. ScientificWorldJournal 2022; 2022:3547266. [PMID: 35132308 PMCID: PMC8817871 DOI: 10.1155/2022/3547266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
In children under five years of age, severe acute malnutrition is a complex and challenging problem, especially those living in poor communities. Therefore, this study aimed to formulate ready-to-use therapeutic foods from affordable, locally available cereals, pulses, and banana fruits to overcome the problem of severe acute malnutrition. Maize grains, pulses (soybeans), and cooking banana fruits were ingredients used in formulations of ready-to-use therapeutic foods (RUTF). A completely randomized design was done with two replicates. Data were analyzed using analysis of variance. A significant difference existed in the appearance and consistency for RUTF1, RUTF2, and RUTF3 samples (P < 0.05). The study findings revealed that the moisture content varied from 6.7 to 13.4%, energy from 513.2 to 642.41 kcal/100 g, protein from 13.9 to 19.34%%, and crude fat from 24.12 to 35.54%. The calcium content ranged from 225 to 302 g/100 mg, iron from 10.34 to 12.26 g/100 mg, and zinc from 10 to 20 g/100 mg. In this study, the phytate content varied from 314.74 to 369.3 μg/g and crude tannin, from 101.36 to 153.25 μg/g. This study concluded that the ingredients used in the RUTF1, RUTF2, and RUTF3 formulations met the standard ready-to-use therapeutic foods. Therefore, it is important to prescribe ready-to-use dietary supplements made from inexpensive, locally available, and culturally acceptable foods to prevent severe acute malnutrition in infants.
Collapse
Affiliation(s)
- Tamiru Yazew
- Department of Food and Nutritional Sciences, Shambu Campus, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
11
|
Terefe ZK, Omwamba MN, Nduko JM. Effect of solid state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Sci Nutr 2021; 9:6343-6352. [PMID: 34760264 PMCID: PMC8565243 DOI: 10.1002/fsn3.2599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cereals including maize generally have limiting amino acids particularly lysine. In most cases, spontaneous fermentation is used to improve the nutritional profiles of maize-based products. However, in such fermentation, biological risks including the presence of pathogenic microorganisms, chemical contaminants, and toxic compounds of microbial origin such as mycotoxins pose a health risk. The aim of this study was, therefore, to improve the nutritional properties of maize flour by reducing antinutritional factors through microbial fermentation by strains of Lactobacillus plantarum and Saccharomyces cerevisiae and their cocultures. A factorial experimental design was used to evaluate the effect of fermentation setups and time on proximate composition, antinutritional factors, and in vitro digestibility of proteins in maize flour. During 48 h of fermentation, protein content was improved by 38%, 55%, 49%, and 48%, whereas in vitro protein digestibility improved by 31%, 40%, 36%, and 34% for natural, Lactobacillus plantarum, Saccharomyces cerevisiae, and their coculture-fermented maize flour, respectively. The highest improvement in protein content and its digestibility was observed for Lactobacillus plantarum strain-fermented maize flour. Phytate, tannin and trypsin inhibitor activity were reduced significantly (p < .05) for natural, Lactobacillus plantarum, Saccharomyces cerevisiae, and coculture-fermented maize flour. The highest reduction of phytate (66%), tannin (75%), and trypsin inhibitor (64%) was observed for coculture-fermented maize flour. The two strains and their cocultures were found feasible for fermentation of maize flour to improve its nutritional profiles more than the conventional fermentation process.
Collapse
Affiliation(s)
- Zemenu K. Terefe
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
- Food Science and TechnologyHawassa UniversityHawassaEthiopia
| | - Mary N. Omwamba
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
| | - John M. Nduko
- Dairy and Food Science and TechnologyEgerton University ‐ Njoro CampusNjoroKenya
| |
Collapse
|
12
|
Keyata EO, Tola YB, Bultosa G, Forsido SF. Premilling treatments effects on nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I sorghum variety ( Sorghum bicolor L.). Food Sci Nutr 2021; 9:1929-1938. [PMID: 33841811 PMCID: PMC8020909 DOI: 10.1002/fsn3.2155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sorghum (Sorghum bicolor L.) is among the staple cereal crops in different parts of Ethiopia. However, the presence of antinutritional factors restricts the digestion of proteins and bioavailability different minerals. Therefore, this study investigates the premilling treatments effects on nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I sorghum variety grown in Benishangul-Gumuz Region, Ethiopia. The experiment was conducted in a completely randomized design with single factor of premilling treatments (control, washing, soaking, and malting). Among evaluated premilling treatments, malting showed significant (p < .05) increase in terms of crude fiber, utilizable carbohydrate, gross energy, and sodium contents. As compared to the raw sorghum, premilling treatments reduced antinutritional contents from 55.81 to 27.4 mg/100 g for tannin, 156.15 to 70.50 mg/100 g for phytates, and 29.9 to 3.22 mg/100 g for oxalate. The premilling techniques also significantly (p < .05) improved in vitro mineral bioavailability as compared to unprocessed sorghum grains. Among the premilling treatments, malting showed significant difference (p < .05) in terms of reduction of tannins, phytates, and oxalate contents with relatively higher mineral bioavailability. In order to enhance the food and nutritional value of sorghum particularly for children and lactating mothers, it is recommended to germinated the grains. Flour from germinated grain also can be used in combination with other nutrient-dense foods to formulate healthy diets for children and maternal nutrition.
Collapse
Affiliation(s)
- Ebisa Olika Keyata
- Department of Food Science and NutritionWollega UniversityShambuEthiopia
- Department of Post‐Harvest ManagementJimma University College of Agriculture and Veterinary MedicineJimmaEthiopia
| | - Yetenayet B. Tola
- Department of Post‐Harvest ManagementJimma University College of Agriculture and Veterinary MedicineJimmaEthiopia
| | - Geremew Bultosa
- Department of Food Science and TechnologyBotswana University of Agriculture and Natural ResourcesGaboroneBotswana
| | - Sirawdink Fikreyesus Forsido
- Department of Post‐Harvest ManagementJimma University College of Agriculture and Veterinary MedicineJimmaEthiopia
| |
Collapse
|