1
|
Apeltrath C, Simon F, Riders A, Rudack C, Oberste M. Extracellular Vesicle microRNAs as Possible Liquid Biopsy Markers in HNSCC-A Longitudinal, Monocentric Study. Cancers (Basel) 2024; 16:3793. [PMID: 39594750 PMCID: PMC11593292 DOI: 10.3390/cancers16223793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Biomarkers for HNSCC are still lacking. Biomolecules obtained via liquid biopsy are being investigated for diagnosis, prognosis, and therapy monitoring, including extracellular vesicles (EVs) and EV-cargo, e.g., proteins, RNA, and microRNA. This study aims to understand localization-dependent EV-microRNA expression in blood sera, their dynamics over time (12 months FU), and insights into their potential in diagnostics and therapy monitoring. METHODS Via liquid biopsy, blood serum was taken from 50 patients with HNSCC and 16 controls. Extracellular vesicles were isolated from serum by precipitation, and the contained microRNA-21, -1246, -200c, -let-7a, -181a, and -26a were amplified by reverse transcription and determined with real-time PCR. Expression ratios (HNSCC to healthy controls) were collated with the patients' clinical parameters. A second liquid biopsy was carried out avg. 12 months later in the tumor aftercare. A sub-analysis with the Oropharynx subsite was implemented. RESULTS EV-mir-21, -let-7a, and -181a were 2.5-3-fold higher expressed in HPV/p16+ than in HPV/p16- HNSCC. Different expressions of EV-mir-181a and -26a could be demonstrated depending on the therapy modality. CONCLUSIONS EV-microRNA could be a promising biomarker in the diagnosis and therapy monitoring of HNSCC. A systematic comparison of EV- and tissue microRNA expression in different HNSCC-subsites is needed.
Collapse
Affiliation(s)
| | | | | | | | - Maximilian Oberste
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Münster, 48149 Münster, Germany; (C.A.); (F.S.); (A.R.); (C.R.)
| |
Collapse
|
2
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
3
|
Korczeniewska OA, Dakshinamoorthy J, Prabhakar V, Lingaiah U. Genetics Affecting the Prognosis of Dental Treatments. Dent Clin North Am 2024; 68:659-692. [PMID: 39244250 DOI: 10.1016/j.cden.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Genetics plays a significant role in determining an individual's susceptibility to dental diseases, the response to dental treatments, and the overall prognosis of dental interventions. Here, the authors explore the various genetic factors affecting the prognosis of dental treatments focusing on dental caries, orthodontic treatment, oral cancer, prosthodontic treatment, periodontal disease, developmental disorders, pharmacogenetics, and genetic predisposition to faster wound healing. Understanding the genetic underpinnings of dental health can help personalize treatment plans, predict outcomes, and improve the overall quality of dental care.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, Room D-880, Newark, NJ 07101, USA
| | - Janani Dakshinamoorthy
- GeneAura Pvt. Ltd, AP1166, 4th street, Anna Nagar, Thendral Colony, Chennai 600040, India.
| | - Vaishnavi Prabhakar
- Department of Dental Sciences Dr. M.G.R. Educational And Research Institute Periyar E.V.R. High Road, (NH 4 Highway) Maduravoyal, Chennai 600095, India
| | - Upasana Lingaiah
- Upasana Lingaiah, Department of Oral Medicine and Radiology, V S Dental College and Hospital, Room number 1, K R Road, V V Puram, Bengaluru, Karnataka 560004, India
| |
Collapse
|
4
|
Nguyen H, Nonaka T. Salivary miRNAs as auxiliary liquid biopsy biomarkers for diagnosis in patients with oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis. Front Genet 2024; 15:1352838. [PMID: 38528913 PMCID: PMC10961377 DOI: 10.3389/fgene.2024.1352838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Objective: The healthcare system needs a novel approach to improve and diagnose early oropharyngeal squamous cell carcinoma against its low survival rate. We conduct a systematic review and a comprehensive meta-analysis for the diagnostic role of blood and salivary microRNAs (miRNAs). Methods: An unbiased and thorough literature search in PubMed yielded appropriate data from qualified articles regarding different miRNA biomarkers, method of extraction, research location, and year of publication. Stata was used to calculate the sensitivity, specificity, diagnostic odds ratio, and summary receiver operating characteristic curve. Results: We included 9 studies with 399 qualified oropharyngeal squamous cell carcinoma patients, which yielded a high diagnostic accuracy of blood miRNAs in combination with salivary miRNAs with a sensitivity of 0.70 (p < 0.001), specificity of 0.75 (p = 0.26), diagnostic odds ratio of 7, and an area under the curve of 0.78. Conclusion: Combined blood- and saliva-derived miRNAs demonstrated a high diagnostic accuracy in detecting oropharyngeal squamous cell carcinoma. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024509424.
Collapse
Affiliation(s)
- Huy Nguyen
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
5
|
Gu W, Yang Y, Liu J, Xue J, Zhao H, Mao L, Zhao S. Tumor-derived exosomes promote macrophages M2 polarization through miR-1-3p and regulate the progression of liver cancer. Mol Immunol 2023; 162:64-73. [PMID: 37657187 DOI: 10.1016/j.molimm.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Hepatic carcinoma is one of the most life-threatening malignancies in the world. In the clinic, it is urgent to establish a clear mechanism of hepatic carcinoma development as the basis for intervention and treatment. The purpose of this study was to explore the regulatory effect of tumor-derived exosomes on the progression of hepatocellular carcinoma.qPCR was used to detect the expression of miR-1-3p. CCk-8 and EdU staining were used to detect the proliferation and activity of hepatocellular carcinoma cells under different conditions. Transwell assay was used to detect migration and invasion of hepatocellular carcinoma cells. The morphology and size of exosomes were detected by transmission electron microscope and nanoparticle tracking analysis. Western blot was used to detect the expression of markers of exosomes. Immunofluorescence staining was used to explore the location of exosomes in hepatocellular carcinoma cells.The results showed that the expression of miR-1-3p was significantly reduced in hepatocellular carcinoma cells, and the exosomes transfected with miR-1-3p could enter macrophages and express miR-1-3p in large quantities. Macrophages polarized to M2 type under the action of miR-1-3p. Polarized M2 macrophages further down-regulated the proliferation, migration and invasion of Huh-7 cells.In summary, miR-1-3p can enter macrophages through exosomes and affect their polarization, thus affecting the growth of hepatic carcinoma cells. miR-1-3p may be a potentially effective target for regulating liver cancer progression.
Collapse
Affiliation(s)
- Weiwei Gu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China
| | - Lingyun Mao
- Department of General Practice, Nantong Third People's Hospital, Nantong University, No.60 Youth Middle Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China.
| | - Suming Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001 Nantong City, Jiangsu Province, China.
| |
Collapse
|
6
|
Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023; 12:1916. [PMID: 37508579 PMCID: PMC10377854 DOI: 10.3390/cells12141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Jacek Kabzinski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108502. [PMID: 37239847 DOI: 10.3390/ijms24108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Abstract
Micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA) and typically interact with specific target mRNAs through complementary base pairing, affecting their translation and/or stability. MiRNAs regulate nearly all cellular functions, including the cell fate of mesenchymal stromal cells (MSCs). It is now accepted that various pathologies arise at the stem level, and, in this scenario, the role played by miRNAs in the fate of MSCs becomes of primary concern. Here we have considered the existing literature in the field of miRNAs, MSCs and skin diseases, classified as inflammatory (such as psoriasis and atopic dermatitis-AD) and neoplastic (melanoma and non-melanoma-skin-cancer including squamous cell and basal cell carcinoma) diseases. In this scoping review article, the evidence recovered indicates that this topic has attracted attention, but it is still a matter of opinion. A protocol for this review was registered in PROSPERO with the registration number "CRD42023420245". According to the different skin disorders and to the specific cellular mechanisms considered (cancer stem cells, extracellular vesicles, inflammation), miRNAs may play a pro- or anti-inflammatory, as well as a tumor suppressive, or supporting, role, indicating a complex regulation of their function. It is evident that the mode of action of miRNAs is more than a switch on-off, and all the observed effects of their dysregulated expression must be checked in a detailed analysis of the targeted proteins. The involvement of miRNAs has been studied mainly for squamous cell carcinoma and melanoma, and much less in psoriasis and AD; different mechanisms have been considered, such as miRNAs included in extracellular vesicles derived both from MSCs or tumor cells, miRNAs involved in cancer stem cells formation, up to miRNAs as candidates to be new therapeutic tools.
Collapse
Affiliation(s)
- Mariangela Di Vincenzo
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Diotallevi
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health-Pharmacology, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Università di Modena e Reggio Emilia, 41121 Modena, Italy
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Campanati
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
8
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
9
|
Farshbaf A, Mohajertehran F, Sahebkar A, Garmei Y, Sabbagh P, Mohtasham N. The role of altered microRNA expression in premalignant and malignant head and neck lesions with epithelial origin. Health Sci Rep 2022; 5:e921. [PMID: 36381409 PMCID: PMC9637951 DOI: 10.1002/hsr2.921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Aims The premalignant lesions of the oral cavity carry a risk of transformation to malignancy. Hence, early diagnosis followed by timely intervention remarkably affects the prognosis of patients. During tumorigenesis, particular microRNAs (miRNAs) show altered expressions and because of their post transcriptionally regulatory role could provide favorable diagnostic, therapeutic, or prognostic values in head and neck cancers. Methods In this review, we have demonstrated diagnostic, prognostic, and potential therapeutic roles of some miRNAs associated with oral premalignant and malignant lesions based on previous validate studies. Results It is previously documented that dysregulation of miRNAs contributes to cancer development and progression. MiRNAs could be tumor suppressors that normally suppress cell proliferation, differentiation, and apoptosis or play as oncogenes that improved tumorigenesis process. Altered expression of miRNAs has also been reported in premalignant oral epithelial lesions such as leukoplakia, oral submucous fibrosis, oral lichen planus and some malignant carcinoma like oral squamous cell, verrucous, spindle cell, Merkel cell carcinoma and basal cell. Conclusion Some of miRNAs could be new therapeutic candidates in miRNA-based target gene therapy. Although more investigations are required to identify the most favorable miRNA candidate, altered expression of some miRNAs could be used as biomarkers in premalignant lesions and oral cancers with high sensitivity and specificity.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yasaman Garmei
- Department of Biology, Faculty of ScienceSistan and Balouchestan UniversityZahedanIran
| | - Parisa Sabbagh
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
10
|
Tang S, Zhao L, Wu XB, Wang Z, Cai LY, Pan D, Li Y, Zhou Y, Shen Y. Identification of a Novel Cuproptosis-Related Gene Signature for Prognostic Implication in Head and Neck Squamous Carcinomas. Cancers (Basel) 2022; 14:cancers14163986. [PMID: 36010978 PMCID: PMC9406337 DOI: 10.3390/cancers14163986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Head and neck squamous carcinoma (HNSC) is a common malignancy that requires novel therapeutic targets. Cuproptosis is an emerging research hotspot. The purpose of this study is to mine the cuproptosis-related genes to find prognosis-related genes. We successfully identified a 24-gene signature for predicting overall survival (OS) in HNSC patients and may expand the range of potential targets for treating HNSC. Abstract Head and neck squamous carcinoma (HNSC) is a frequent and deadly malignancy that is challenging to manage. The existing treatment options have considerable efficacy limitations. Hence, the identification of new therapeutic targets and the development of efficacious treatments are urgent needs. Cuproptosis, a non-apoptotic programmed cell death caused by excess copper, has only very recently been discovered. The present study investigated the prognostic importance of genes involved in cuproptosis through the mRNA expression data and related clinical information of HNSC patients downloaded from public databases. Our results revealed that many cuproptosis-related genes were differentially expressed between normal and HNSC tissues in the TCGA cohort. Moreover, 39 differentially expressed genes were associated with the prognosis of HNSC patients. Then, a 24-gene signature was identified in the TCGA cohort utilizing the LASSO Cox regression model. HNSC expression data used for validation were obtained from the GEO database. Consequently, we divided patients into high- and low-risk groups based on the 24-gene signature. Furthermore, we demonstrated that the high-risk group had a worse prognosis when compared to the low-risk group. Additionally, significant differences were found between the two groups in metabolic pathways, immune microenvironment, etc. In conclusion, we found a cuproptosis-related gene signature that can be used effectively to predict OS in HNSC patients. Thus, targeting cuproptosis might be an alternative and promising strategy for HNSC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Li Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Xing-Bo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Lu-Yao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu 610041, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
11
|
Mo L, Su Y, Yuan J, Xiao Z, Zhang Z, Lan X, Huang D. Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics. Curr Genomics 2022; 23:94-108. [PMID: 36778975 PMCID: PMC9878835 DOI: 10.2174/1389202923666220204153744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Machine learning methods showed excellent predictive ability in a wide range of fields. For the survival of head and neck squamous cell carcinoma (HNSC), its multi-omics influence is crucial. This study attempts to establish a variety of machine learning multi-omics models to predict the survival of HNSC and find the most suitable machine learning prediction method. Methods: The HNSC clinical data and multi-omics data were downloaded from the TCGA database. The important variables were screened by the LASSO algorithm. We used a total of 12 supervised machine learning models to predict the outcome of HNSC survival and compared the results. In vitro qPCR was performed to verify core genes predicted by the random forest algorithm. Results: For omics of HNSC, the results of the twelve models showed that the performance of multi-omics was better than each single-omic alone. Results were presented, which showed that the Bayesian network(BN) model (area under the curve [AUC] 0.8250, F1 score=0.7917) and random forest(RF) model (area under the curve [AUC] 0.8002,F1 score=0.7839) played good prediction performance in HNSC multi-omics data. The results of in vitro qPCR were consistent with the RF algorithm. Conclusion: Machine learning methods could better forecast the survival outcome of HNSC. Meanwhile, this study found that the BN model and the RF model were the most superior. Moreover, the forecast result of multi-omics was better than single-omic alone in HNSC.
Collapse
Affiliation(s)
- Liying Mo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China;,These authors contributed equally to this work
| | - Yuangang Su
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China;,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China;,These authors contributed equally to this work
| | - Jianhui Yuan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China;,The Laboratory of Biomedical Photonics and Engineering, Guangxi Medical University, Nanning, China
| | - Zhiwei Xiao
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, China
| | - Ziyan Zhang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China;,These authors contributed equally to this work
| | - Daizheng Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China;,The Laboratory of Biomedical Photonics and Engineering, Guangxi Medical University, Nanning, China;,Address correspondence to this author at the School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China; The Laboratory of Biomedical Photonics and Engineering, Guangxi Medical University, Nanning, China; Tel: +867715358270; E-mail:
| |
Collapse
|
12
|
Iacob R, Mandea M, Iacob S, Pietrosanu C, Paul D, Hainarosie R, Gheorghe C. Liquid Biopsy in Squamous Cell Carcinoma of the Esophagus and of the Head and Neck. Front Med (Lausanne) 2022; 9:827297. [PMID: 35572996 PMCID: PMC9098838 DOI: 10.3389/fmed.2022.827297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Squamous cell carcinomas of the esophagus (ESCC) and of the head and neck (HNSCC) are two neoplasms that share common risk factors and have the same embryological origin, but a very different prognosis, the 5-year survival of HNSCC being almost double (40–50%) compared to the 5-year survival of ESCC (20%). Current guidelines emphasize the importance of screening for ESCC in patients diagnosed with head and neck cancers. A liquid biopsy is a novel tool for diagnosis, prognostic stratification, and personalized therapy. Liquid biopsy biomarkers for these two malignancies could help both their early detection, facilitate residual disease identification, and provide prognosis information. The present systematic review of the literature was aimed at describing the liquid biopsy biomarkers present in these two malignancies, with an emphasis on potential clinical applications.
Collapse
Affiliation(s)
- Razvan Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Matei Mandea
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Speranta Iacob
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalina Pietrosanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Razvan Hainarosie
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Professor Doctor Dorin Hociota Institute of Phonoaudiology and Functional ENT Surgery, Bucharest, Romania
- *Correspondence: Razvan Hainarosie
| | - Cristian Gheorghe
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
13
|
Nicolai A, Taurone S, Carradori S, Artico M, Greco A, Costi R, Scarpa S. The kinesin Eg5 inhibitor K858 exerts antiproliferative and proapoptotic effects and attenuates the invasive potential of head and neck squamous carcinoma cells. Invest New Drugs 2022; 40:556-564. [PMID: 35312942 PMCID: PMC9098576 DOI: 10.1007/s10637-022-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Our group recently demonstrated that K858, an inhibitor of motor kinesin Eg5, has important antiproliferative and apoptotic effects on breast cancer, prostatic cancer, melanoma and glioblastoma cells. Since high levels of kinesin Eg5 expression have been correlated with a poor prognosis in laryngeal carcinoma, we decided to test the anticancer activity of K858 toward this tumor, which belongs to the group of head and neck squamous cell carcinomas (HNSCCs). These cancers are characterized by low responsiveness to therapy. The effects of K858 on the proliferation and assembly of mitotic spindles of three human HNSCC cell lines were studied using cytotoxicity assays and immunofluorescence for tubulin. The effect of K858 on the cell cycle was analyzed by FACS. The expression levels of cyclin B1 and several markers of apoptosis and invasion were studied by Western blot. Finally, the negative regulation of the malignant phenotype by K858 was evaluated by an invasion assay. K858 inhibited cell replication by rendering cells incapable of developing normal bipolar mitotic spindles. At the same time, K858 blocked the cell cycle in the G2 phase and induced the accumulation of cytoplasmic cyclin B and, eventually, apoptosis. Additionally, K858 inhibited cell migration and attenuated the malignant phenotype. The data described confirm that kinesin Eg5 is an interesting target for new anticancer strategies and suggest that this compound may be a powerful tool for an alternative therapeutic approach to HNSCCs.
Collapse
|
14
|
Tomaszewska W, Kozłowska-Masłoń J, Baranowski D, Perkowska A, Szałkowska S, Kazimierczak U, Severino P, Lamperska K, Kolenda T. miR-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker. Biomedicines 2021; 9:1894. [PMID: 34944712 PMCID: PMC8698850 DOI: 10.3390/biomedicines9121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment.
Collapse
Affiliation(s)
- Weronika Tomaszewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Dawid Baranowski
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Anna Perkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Sandra Szałkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Patricia Severino
- Centro de Pesquisa Experimental, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627-Jardim Leonor, São Paulo 05652-900, SP, Brazil;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
15
|
Dong X, Zhang P, Liu L, Li H, Cheng S, Li S, Wang Y, Zheng C, Dong J, Zhang L. The Circ_0001367/miR-545-3p/LUZP1 Axis Regulates Cell Proliferation, Migration and Invasion in Glioma Cells. Front Oncol 2021; 11:781471. [PMID: 34869035 PMCID: PMC8637337 DOI: 10.3389/fonc.2021.781471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023] Open
Abstract
Glioma is the most common primary intracranial malignant tumour in adults. It has a high incidence and poses a serious threat to human health. Circular RNA is a hotspot of cancer research. In this study, we aimed to explore the role of circ_0001367 in gliomagenesis and the underlying mechanism. First, qRT-PCR was conducted, which showed that circ_0001367 level was downregulated in glioma tissues and cells. Next, gain-of-function and loss-of-function assays were performed, which indicated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells. Subsequent bioinformatics analysis, dual-luciferase reporter assays, RNA immunoprecipitation assays and cell function assays demonstrated that circ_0001367 inhibited the proliferation, migration and invasion of glioma cells by absorbing miR-545-3p and thereby regulating the expression of leucine zipper protein (LUZP1). Finally, an in vivo experiment was conducted, which demonstrated that circ_0001367 inhibited glioma growth in vivo by modulating miR-545-3p and LUZP1. Taken together, the results of this study demonstrate that the circ_0001367/miR-545-3p/LUZP1 axis may be a novel target for glioma therapy.
Collapse
Affiliation(s)
- Xuchen Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurosurgery, Rugao Hospital Affiliated to Nantong University, Nantong, China
| | - Liang Liu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoran Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suwen Li
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Re M, Tomasetti M, Monaco F, Amati M, Rubini C, Sollini G, Bajraktari A, Gioacchini FM, Santarelli L, Pasquini E. MiRNome analysis identifying miR-205 and miR-449a as biomarkers of disease progression in intestinal-type sinonasal adenocarcinoma. Head Neck 2021; 44:18-33. [PMID: 34647653 PMCID: PMC9292973 DOI: 10.1002/hed.26894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Patients with intestinal-type sinonasal adenocarcinoma (ITAC) have an unfavorable prognosis, and new diagnostic and therapeutic approaches are needed to improve clinical management. METHODS Next-generation sequencing-based miRNome analysis was performed on 43 ITAC patients who underwent surgical resection, and microRNA (miRNA) data were obtained from 35 cases. Four miRNAs were identified, and their expression levels were detected by reverse-transcription quantitative polymerase chain reaction and related to the relevant patient outcome. Overall survival and disease-free survival rates were evaluated through the Kaplan-Meier method and log-rank test, and multivariate analysis was performed by means of Cox proportional hazard analysis. RESULTS High levels of miR-205 and miR-34c/miR-449 cluster expression were associated with an increased recurrence risk and, therefore, a worse prognosis. Multivariate analysis confirmed that miR-205 and miR-449 were significant prognostic predictors. CONCLUSIONS A high expression of miR-205 and miR-449 is independent predictors of poor survival for ITAC patients.
Collapse
Affiliation(s)
- Massimo Re
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Anatomy Pathology and Histopathology Section, Polytechnic University of Marche, Ancona, Italy
| | | | - Arisa Bajraktari
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | |
Collapse
|
17
|
Liang F, Wang R, Du Q, Zhu S. An Epithelial-Mesenchymal Transition Hallmark Gene-Based Risk Score System in Head and Neck Squamous-Cell Carcinoma. Int J Gen Med 2021; 14:4219-4227. [PMID: 34393501 PMCID: PMC8354775 DOI: 10.2147/ijgm.s327632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) program plays a critical role in cancer. Thus, we attempted to generate a risk score system according to the expression pattern of different EMT hallmark genes in head and neck squamous-cell carcinoma (HNSC). Methods Differentially expressed EMT hallmark genes were screened to generate a risk score (RS) on TCGA HNSC dataset. The relative prognostic value of the RS compared to clinicopathological characteristics was explored using multivariable Cox analysis. Functional enrichment analysis was performed to reveal the biological characteristics. An external dataset was applied to validate the prognostic value of the RS. Results Nine genes constituted the EMT hallmark gene-based RS, which is significantly associated with poor prognosis and could successfully divide patients with HNSC into high- and low-risk groups. The RS was also an independent prognostic indicator compared to routine clinical factors. Conclusion We proposed and validated a nine-EMT hallmark gene-based risk score system in HNSC.
Collapse
Affiliation(s)
- Feifei Liang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rensheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qinghua Du
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Shangyong Zhu
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
18
|
Anti-Tumoral Effects of a (1 H-Pyrrol-1-yl)Methyl-1 H-Benzoimidazole Carbamate Ester Derivative on Head and Neck Squamous Carcinoma Cell Lines. Pharmaceuticals (Basel) 2021; 14:ph14060564. [PMID: 34204738 PMCID: PMC8231569 DOI: 10.3390/ph14060564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Nocodazole is an antineoplastic agent that exerts its effects by depolymerizing microtubules. Herein we report a structural analog of nocodazole, a (1H-pyrrol-1-yl)methyl-1H-benzoimidazole carbamate ester derivative, named RDS 60. We evaluated the antineoplastic properties of RDS 60 in two human head and neck squamous cell carcinoma (HNSCC) cell lines and we found that this compound significantly inhibited replication of both HNSCC cell lines without inducing any important cytotoxic effect on human dermal fibroblasts and human keratinocytes. The treatment of HNSCC cell lines with 1 μM RDS 60 for 24 h stopped development of normal bipolar mitotic spindles and, at the same time, blocked the cell cycle in G2/M phase together with cytoplasmic accumulation of cyclin B1. Consequently, treatment with 2 μM RDS 60 for 24 h induced the activation of apoptosis in both HNSCC cell lines. Additionally, RDS 60 was able to reverse the epithelial-mesenchymal transition and to inhibit cell migration and extracellular matrix infiltration of both HNSCC cell lines. The reported results demonstrate that this compound has a potent effect in blocking cell cycle, inducing apoptosis and inhibiting cell motility and stromal invasion of HNSCC cell lines. Therefore, the ability of RDS 60 to attenuate the malignancy of tumor cells suggests its potential role as an interesting and powerful tool for new approaches in treating HNSCC.
Collapse
|
19
|
Fekete JT, Welker Á, Győrffy B. miRNA Expression Signatures of Therapy Response in Squamous Cell Carcinomas. Cancers (Basel) 2020; 13:cancers13010063. [PMID: 33379285 PMCID: PMC7794682 DOI: 10.3390/cancers13010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary miRNAs play role in various diseases and can also modulate therapy response. Our aim was to identify predictive miRNAs in platinum treated squamous cell carcinomas (SCC). Using a set of 266 squamous cancer samples we uncovered 16, 103, and 9 miRNAs correlated to chemotherapy response in the cervical, head and neck, and lung squamous cell carcinomas, respectively. By employing a logistic regression model, a signature comprising a set of six miRNAs was established capable to predict chemotherapy response with an AUC of 0.897. Our results show common molecular features of SCC tumors and pinpoint the most important miRNAs related to treatment outcome. Abstract Introduction: Squamous cell carcinomas (SCC) are a major subgroup of malignant tumors with a platinum-based first-line systematic chemotherapy. miRNAs play a role in various diseases and modulate therapy response as well. The aim of this study was to identify predictive miRNAs in platinum-treated SCCs. Methods: miRNA expression data of platinum-treated head and neck (HNSC), cervical (CESC) and lung (LUSC) cancer were collected from the TCGA repositories. Treatment response was defined based on presence or absence of disease progression at 18 months. Responder and nonresponder cohorts were compared using Mann–Whitney and Receiver Operating Characteristic tests. Logistic regression was developed to establish a predictive miRNA signature. Significance was set at FDR < 5%. Results: The integrated database includes 266 SCC patient samples with platinum-based therapy and available follow-up. We uncovered 16, 103, and 9 miRNAs correlated to chemotherapy response in the CESC, HNSC, and LUSC cohorts, respectively. Eight miRNAs overlapped between the CESC and HNSC subgroups, and three miRNAs overlapped between the LUSC and HNSC subgroups. We established a logistic regression model in HNSC and CESC which included six miRNAs: hsa-miR-5586 (Exp (B): 2.94, p = 0.001), hsa-miR-632 (Exp (B): 10.75, p = 0.002), hsa-miR-2355 (Exp (B): 0.48, p = 0.004), hsa-miR-642a (Exp (B): 2.22, p = 0.01), hsa-miR-101-2 (Exp (B): 0.39, p = 0.013) and hsa-miR-6728 (Exp (B): 0.21, p = 0.016). The model using these miRNAs was able to predict chemotherapy resistance with an AUC of 0.897. Conclusions: We performed an analysis of RNA-seq data of squamous cell carcinomas samples and identified significant miRNAs correlated to the response against platinum-based therapy in cervical, head and neck, and lung tumors.
Collapse
Affiliation(s)
- János Tibor Fekete
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
| | - Ágnes Welker
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- Research Center for Natural Sciences, Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
- Correspondence:
| |
Collapse
|