1
|
Niczyporuk JS, Kozdruń W, Tomczyk G, Piekarska K, Barabasz M, Michalski M. Molecular characteristics of fowl adenovirus strains detected in broiler chickens on diets without immunostimulant supplements. J Vet Res 2024; 68:207-214. [PMID: 38947150 PMCID: PMC11210352 DOI: 10.2478/jvetres-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Outbreaks of fowl adenovirus (FAdV) infection in chicken flocks in Poland threaten birds' health and lives and are rising in frequency. The risk of these infections in immunocompromised poultry flocks with developed clinical symptoms was analysed through virus detection in broiler chicks and correlation of cases with the birds' immune strength. Material and Methods Samples were analysed from four broiler farms with chicks from the same hatchery in Silesia, Poland where feeding regimes were different. A normal diet was provided to birds on the control farm; a normal diet and probiotic, prebiotic, vitamin and microelement supplementation was supplied on another farm; a normal diet and antibiotics on the third; and a normal diet and both forms of supplementation were given on the fourth farm. Amplification of the virus DNA in a PCR with hexon gene L1 loop hypervariable region 1-4 primers determined the molecular characteristics of isolates of adenovirus strains obtained from necropsy tissue samples. The amplicon sequences were analysed, the pair-wise distances were determined, the maximum likelihood estimate for the gamma parameter for site rates was produced, Tajima's D neutrality test was run and the relative synonymous codon usage and transition/transversion bias were calculated. Results Two species and two serotypes of fowl adenovirus - MW353018-FAdV-1/A-L-liver and MW353019-FAdV-5/B-I-intestine - were isolated in three-week-old broiler chicks on the control farm. Conclusion Supplementation of broiler chicken flocks with probiotics, prebiotics, vitamins and microelements may have a significant beneficial effect on immunity and can prevent virus infection. The studies provided new information on the molecular characteristics of adenovirus strains isolated from chicks with a low level of immunity.
Collapse
Affiliation(s)
| | - Wojciech Kozdruń
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | - Karolina Piekarska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | | | | |
Collapse
|
2
|
Song Y, Liu L, Sun W, Gao W, Song X, Wang Y, Wei Q, Huang Z, Li X. Identification, pathogenicity and molecular characterization of a novel fowl adenovirus 8b strain. Poult Sci 2024; 103:103725. [PMID: 38603933 PMCID: PMC11017358 DOI: 10.1016/j.psj.2024.103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Since 2012, there has been a noticeable upward trend in the global incidence of inclusion body hepatitis (IBH) cases, leading to substantial economic losses in the poultry industry. In response to this trend, the current study aimed to investigate the phylogenetic information, genetic mutations, and pathogenicity of the highly pathogenic fowl adenovirus (FAdV) strain HN1472, which was isolated from liver samples obtained from a laying flock affected by IBH. This investigation was carried out using 1-day-old specific pathogen-free (SPF) chickens. Recombination and phylogenetic analyses confirmed that HN1472 is a recombinant strain derived from FAdV-8a and FAdV-8b, and exhibited significant genetic divergence in the hexon, fiber, and ORF19 genes. Notably, the phylogenetic analysis identified recombination events in these regions. Furthermore, animal experiments revealed that HN1472 is a highly pathogenic isolate, causing 80% mortality and manifesting clinical signs of IBH in SPF chickens. Furthermore, the recombinant FAdV serotype 8b (FAdV-8b) was found to be widely distributed in various tissues, with a higher concentration in the livers and gizzard tissue at 3 d postchallenge (dpc). Collectively, these findings contribute to our current understanding of the factors influencing the pathogenicity and genetic diversity of FAdV serotype 8b (FAdV-8b) in China.
Collapse
Affiliation(s)
- Yapeng Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenming Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaonan Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zongmei Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinsheng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
3
|
Franzo G, Faustini G, Tucciarone CM, Pasotto D, Legnardi M, Cecchinato M. Conflicting Evidence between Clinical Perception and Molecular Epidemiology: The Case of Fowl Adenovirus D. Animals (Basel) 2023; 13:3851. [PMID: 38136888 PMCID: PMC10741239 DOI: 10.3390/ani13243851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy; (G.F.); (C.M.T.); (D.P.); (M.L.); (M.C.)
| | | | | | | | | | | |
Collapse
|
4
|
Fowl Adenovirus Infection – Potential Cause of a Suppressed Humoral Immune Response of Broilers to Newcastle Disease Vaccination. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Fowl adenovirus infections have a significant economic impact, especially in the production of broilers. It is considered the leading cause of three syndromes: adenoviral gizzard erosions and ulcerations, inclusion body hepatitis, and hepatitis-hydropericardium syndrome. A critical feature of this virus is its immunosuppressive effect, via suppressing humoral and cellular immunity.
In this study, we examined the humoral immune response after administration of the Newcastle disease vaccine in broiler flocks with previously confirmed seroconversion against Fowl adenovirus. The study was conducted on 5 farms. A total of 220 chickens, five weeks of age, showing no clinical signs of the disease, were included in this study. The control group consisted of 20 chickens from a negative farm. Chickens were vaccinated with commercially available live NDV vaccines between 11 and 13 days of life. ELISA determined the presence of specific antibodies against FAdV in a total of 130/200 (65%) blood sera. Depending on the farm, seroprevalence ranged from 30-100%. The presence of specific antibodies against NDV was determined three weeks after vaccination using the hemagglutination inhibition assay. A positive hemagglutination inhibition (HI) titer (≥ 16) was found in 41/200 (20.5%) sera, which was significantly less compared to the control farm, where a positive HI titer was found in 20/20 (100%) sera.
The results of our study indicate the immunosuppressive effect of FAdV in subclinically infected birds and highlight the need for its diagnosis, prevention, and control.
Collapse
|
5
|
Detection, Quantification and Molecular Characterization of Fowl Adenoviruses Circulating in Ecuadorian Chicken Flocks during 2019-2021. Vet Sci 2023; 10:vetsci10020115. [PMID: 36851419 PMCID: PMC9963715 DOI: 10.3390/vetsci10020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Fowl adenoviruses are a group of pathogens that cause large economic losses worldwide in the poultry industry, in addition to producing a wide range of diseases, such as IBH, HHS, and enteric and respiratory diseases. The objective of this study was to quantify, identify, and molecularly characterize the types of FAdV circulating in commercial poultry farms (broilers, breeders, and layers) in Ecuador from 2019 to 2021. Molecular characterization was performed by PCR, quantification by qPCR, and subsequent sequencing for each positive sample. The results indicated that the FAdV genotypes circulating in our country are FAdV-2/D2, FAdV-6/E1, FAdV-8a/E2, and FAdV-11/D3; the samples were grouped into different groups that contain sequences that were obtained from countries in Africa, Asia, and America, and that are found in birds at different ages, since early age where can cause different clinical signs, such as diarrhea, ruffled feathers and dwarfism. Therefore, these results indicate that several genotypes of the virus are circulating in commercial poultry flocks, suggesting that biosecurity measures on farms should be improved, in addition to carrying out new or improved vaccination plans.
Collapse
|
6
|
Zhuang Q, Wang S, Zhang F, Zhao C, Chen Q, Zhao R, Guo P, Ju L, Li J, Hou G, Chen X, Sun F, Wang K. Molecular epidemiology analysis of fowl adenovirus detected from apparently healthy birds in eastern China. BMC Vet Res 2023; 19:5. [PMID: 36624468 PMCID: PMC9827690 DOI: 10.1186/s12917-022-03545-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Fowl adenovirus is of major concern to the poultry industry worldwidely. In order to monitor the prevalent status of Fowl adenovirus in China, a total of 1920 clinical samples from apparently healthy birds in the 25 sites of poultry flocks, Slaughterhouse and living bird markets from 8 provinces in eastern China were collected and detected by PCR, sequencing, and phylogenetic analysis. RESULTS The epidemiological survey showed that Fowl adenoviruses were detected in living bird markets, and circulating in a variety of fowl species, including chickens, ducks, goose and pigeons. Among the 1920 clinical samples, 166 samples (8.65%) were positive in the fowl adenovirus PCR detection. In this study, totally all the 12 serotypes (serotypes of 1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10 and 11) fowl adenoviruses were detected, the most prevalent serotype was serotype 1. Phylogenetic analysis indicated that 166 FAdVs of 12 serotypes were divided into 5 fowl adenovirus species (Fowl aviadenovirus A, B, C, D, E). CONCLUSIONS In the epidemiological survey, 8.65% of the clinical samples from apparently healthy birds were positive in the fowl adenovirus PCR detection. Totally all the 12 serotypes fowl adenoviruses were detected in a variety of fowl species, which provided abundant resources for the research of fowl adenoviruses in China. The newly prevalent FAdV serotypes provides valuable information for the development of an effective control strategy for FAdV infections in fowls.
Collapse
Affiliation(s)
- Qingye Zhuang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China ,Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province China
| | - Suchun Wang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China
| | - Fuyou Zhang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China
| | - Chenglong Zhao
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China
| | - Qiong Chen
- Xiamen Agricultural Product Quality and Safety Testing Center, Xiamen, Fujian Province, China
| | - Ran Zhao
- Xiamen Agricultural Product Quality and Safety Testing Center, Xiamen, Fujian Province, China
| | - Pin Guo
- Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province China
| | - Lei Ju
- Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province China
| | - Jinping Li
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China
| | - Guangyu Hou
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China
| | - Xiaoying Chen
- Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province China
| | - Fuliang Sun
- grid.440752.00000 0001 1581 2747Yanbian University, Yanbian, Yanji, Jilin Province 133002 China
| | - Kaicheng Wang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong Province China ,grid.418524.e0000 0004 0369 6250Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs, Qingdao, P.R. China
| |
Collapse
|
7
|
El-Shall NA, El-Hamid HSA, Elkady MF, Ellakany HF, Elbestawy AR, Gado AR, Geneedy AM, Hasan ME, Jaremko M, Selim S, El-Tarabily KA, El-Hack MEA. Epidemiology, pathology, prevention, and control strategies of inclusion body hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. Front Vet Sci 2022; 9:963199. [PMID: 36304412 PMCID: PMC9592805 DOI: 10.3389/fvets.2022.963199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022] Open
Abstract
Infection with fowl adenoviruses (FAdVs) can result in a number of syndromes in the production of chicken, including inclusion body hepatitis (IBH), hepatitis-hydropericardium syndrome (HHS), and others, causing enormous economic losses around the globe. FAdVs are divided into 12 serotypes and five species (A-E; 1-8a and 8b-11). Most avian species are prone to infection due to the widespread distribution of FAdV strains. The genus aviadenovirus, which is a member of the adenoviridae family, is responsible for both IBH and HHS. The most popular types of transmission are mechanical, vertical, and horizontal. Hepatitis with basophilic intranuclear inclusion bodies distinguishes IBH, but the buildup of translucent or straw-colored fluid in the pericardial sac distinguishes HHS. IBH and HHS require a confirmatory diagnosis because their clinical symptoms and postmortem abnormalities are not unique to those conditions. Under a microscope, the presence of particular lesions and inclusion bodies may provide clues. Traditional virus isolation in avian tissue culture is more delicate than in avian embryonated eggs. Additionally, aviadenovirus may now be quickly and precisely detected using molecular diagnostic tools. Preventive techniques should rely on efficient biosecurity controls and immunize breeders prior to production in order to protect progeny. This current review gives a general overview of the current local and global scenario of IBH, and HHS brought on by FAdVs and covers both their issues and preventative vaccination methods.
Collapse
Affiliation(s)
- Nahed A. El-Shall
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hatem S. Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Magdy F. Elkady
- Poultry Disease Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hany F. Ellakany
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amr M. Geneedy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El Sadat City, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
8
|
Niczyporuk JS, Kozdruń W. Current epidemiological situation in the context of inclusion body hepatitis in poultry flocks in Poland. Virus Res 2022; 318:198825. [PMID: 35618076 DOI: 10.1016/j.virusres.2022.198825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
The research has been undertaken to understand the spreading of adenovirus strains in Poland's poultry flocks in the last six years. One hundred and forty-nine herds suspected of infection with adenoviruses were tested and the presence of poultry adenoviruses was found in 86 studied herds which were about 57,71% of examined flocks. Thirty-eight (44.18%) strains were connected with the infection of inclusion body hepatitis, 11 (12.79%) strains were isolated from digestive system dysfunction, 33 (38.37%) strains had been obtained from the flocks with no symptomatic changes/behaviour, and four (4.65%) strains were obtained from flocks with the manifestation of depression. Sequencing analysis was based on Loop L1 region of the HVR1-4 fragment of the hexon gene. The adenovirus strains were classified into five species FAdV-A-E, belonging to the following eight serotypes: FAdV-1/A, FAdV-5/B, FAdV-3/10/C, FAdV-9/11/D, and FAdV-7/8a/E. The most common serotype in poultry turned out to be type/species FAdV-11/D, FAdV-5/B, and FAdV-7/8b/E while the least frequent was type/species FAdV-3/10/C (only four and two strains respectively of this types were isolated with the following range: FAdV-1/A 6 (6.97%), FAdV-5/B 24 (27,90%), FAdV-3/C 4 (4,65%), FAdV-10/C 2 (2,32%), FAdV-11/D 36 (41,86%), and FAdV-E 14 (16.27%). The understanding of genetic diversity, geographic distribution, and antigenic properties of fowl adenovirus strains (FAdVs) isolated in Poland have been evaluated.
Collapse
Affiliation(s)
- Jowita Samanta Niczyporuk
- Department of Poultry Disease of National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Pulawy, Poland,.
| | - Wojciech Kozdruń
- Department of Poultry Disease of National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Pulawy, Poland
| |
Collapse
|
9
|
Tsiouris V, Mantzios T, Kiskinis K, Guérin JL, Croville G, Brellou GD, Apostolopoulou EP, Petridou EJ, Georgopoulou I. First Detection and Identification of FAdV-8b as the Causative Agent of an Outbreak of Inclusion Body Hepatitis in a Commercial Broiler Farm in Greece. Vet Sci 2022; 9:vetsci9040160. [PMID: 35448658 PMCID: PMC9027271 DOI: 10.3390/vetsci9040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Inclusion body hepatitis (IBH) is an economically important disease of chickens, with a worldwide distribution, caused by Fowl Aviadenoviruses (FAdVs). Currently, the increased number of cases, the virulence of the isolate strains, as well as the lack of cross-species protection highlight that detailed in-field data are fundamental for the development of successful control strategies. This case report provides a detailed clinicopathological investigation of an unusual IBH outbreak in a commercial broiler farm in the region of Macedonia, Greece. The farm consisted of 64,000 birds, originated from the same breeder stock and placed in three different houses (Flock A–C). At 20 days of age, a sudden increase in daily mortality was recorded in Flock A. It is worth mentioning that, although all flocks were serologically (indirect ELISA) and molecularly (RT-PCR) positive for FAdV, the mortality rate, attributed to IBH, was much higher in Flock A compared to others. The clinical manifestation included non-specific symptoms such as depression, inappetence, yellowish mucoid diarrhea, and lack of uniformity. At necropsy, typically, enlarged, pale, and friable livers were dominant, while sporadically lesions were recorded in the pancreas, kidneys, skeletal muscles, and lymphoid organs. The histopathological examination of liver samples showed multifocal inflammation, necrosis, and the presence of basophilic/ eosinophilic inclusion bodies in hepatocytes. In addition, the loss of the architecture of pancreatic lobules and the presence of fibrosis and foci of mononuclear cell aggregates were suggestive of chronic pancreatic inflammation. PCR analysis confirmed the presence of FAdV, belonging to species E, serotype FAdV-8b. Performance and financial calculations revealed that IBH increased Feed Conversion Ratio (FCR), feed cost/chick as well as feed cost/kg live weight, whereas the Livability (%) and the European Production Efficiency Factor (EPEF) were decreased in the most severely affected flocks (Flock A). This study is the first report of the detection and identification of FAdV serotypes associated with IBH in commercial broiler flocks in Greece. However, there is still a lack of information about the circulating FAdV serotypes in the country, and therefore epidemiological studies are needed to establish control strategies for IBH.
Collapse
Affiliation(s)
- Vasileios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
- Correspondence: ; Tel.: +30-2310994551
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (J.-L.G.); (G.C.)
| | - Guillaume Croville
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (J.-L.G.); (G.C.)
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Emmanouela P. Apostolopoulou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (G.D.B.); (E.P.A.)
| | - Evanthia J. Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Georgopoulou
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (V.T.); (K.K.); (I.G.)
| |
Collapse
|
10
|
Species Fowl aviadenovirus B Consists of a Single Serotype despite Genetic Distance of FAdV-5 Isolates. Viruses 2022; 14:v14020248. [PMID: 35215844 PMCID: PMC8880664 DOI: 10.3390/v14020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
Fowl adenoviruses (FAdVs) are infectious agents, mainly of chickens, which cause economic losses to the poultry industry. Only a single serotype, namely FAdV-5, constitutes the species Fowl aviadenovirus B (FAdV-B); however, recently, phylogenetic analyses have identified divergent strains of the species, implicating a more complex scenario and possibly a novel serotype. Therefore, field isolates of the species were collected to investigate the contemporary diversification within FAdV-B, including traditional serotyping. Full genomes of fourteen FAdV-B strains were sequenced and four strains, possessing discriminatory mutations in the antigenic domains, were compared using virus cross-neutralization. Essentially, strains with identical antigenic signatures to that of the first described divergent strain were found in the complete new dataset. While chicken antiserum against FAdV-5 reference strain 340 could not neutralize any of the newly isolated viruses, low homologous/heterologous titer ratios were measured reciprocally. Although they argue against a new serotype, our results indicate the emergence of escape variants in FAdV-B. Charge-influencing amino acid substitutions accounted for only a few mutations between the strains; still, these enabled one-way cross-neutralization only. These findings underline the continued merit of the cross-neutralization test as the gold standard for serotyping, complementary to advancing sequence data, and provide a snapshot of the actual diversity and evolution of species FAdV-B.
Collapse
|
11
|
A 10-Year Retrospective Study of Inclusion Body Hepatitis in Meat-Type Chickens in Spain (2011-2021). Viruses 2021; 13:v13112170. [PMID: 34834976 PMCID: PMC8617850 DOI: 10.3390/v13112170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
A surge in fowl adenovirus (FAdV) causing inclusion body hepatitis (IBH) outbreaks has occurred in several countries in the last two decades. In Spain, a sharp increase in case numbers in broilers and broiler breeder pullets arose since 2011, which prompted the vaccination of breeders in some regions. Our retrospective study of IBH cases in Spain from 2011 to 2021 revealed that most cases were reported in broilers (92.21%) and were caused by serotypes FAdV-8b and -11, while cases in broiler breeder pullets were caused by serotypes FAdV-2, -11, and -8b. Vertical transmission was the main route of infection, although horizontal transmission likely happened in some broiler cases. Despite the inconsistent and heterogeneous use of vaccines among regions and over time, the number of cases mirrored the use of vaccines in the country. While IBH outbreaks were recorded year-long, significantly more cases occurred during the cooler and rainier months. The geographic distribution suggested a widespread incidence of IBH and revealed the importance of a highly integrated system. Our findings contribute to a better understanding of FAdV infection dynamics under field conditions and reiterate the importance of surveillance, serological monitoring of breeders, and vaccination of breeders against circulating serotypes to protect progenies.
Collapse
|