1
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
2
|
Shehzadi K, Saba A, Yu M, Liang J. Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2. Top Curr Chem (Cham) 2023; 381:22. [PMID: 37318607 DOI: 10.1007/s41061-023-00432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic since 2019, spreading rapidly and posing a significant threat to human health and life. With over 6 billion confirmed cases of the virus, the need for effective therapeutic drugs has become more urgent than ever before. RNA-dependent RNA polymerase (RdRp) is crucial in viral replication and transcription, catalysing viral RNA synthesis and serving as a promising therapeutic target for developing antiviral drugs. In this article, we explore the inhibition of RdRp as a potential treatment for viral diseases, analysing the structural information of RdRp in virus proliferation and summarizing the reported inhibitors' pharmacophore features and structure-activity relationship profiles. We hope that the information provided by this review will aid in structure-based drug design and aid in the global fight against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Afsheen Saba
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 10081, China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China.
| |
Collapse
|
3
|
Bello M, Hasan MK. Elucidation of the inhibitory activity of plant-derived SARS-CoV inhibitors and their potential as SARS-CoV-2 inhibitors. J Biomol Struct Dyn 2022; 40:9992-10004. [PMID: 34121618 DOI: 10.1080/07391102.2021.1938234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several drugs are now being tested as possible therapies due to the necessity of treating SARS-CoV-2 infection. Although approved vaccines bring much hope, a vaccination program covering the entire global population will take a very long time, making the development of effective antiviral drugs an effective solution for the immediate treatment of this dangerous infection. Previous studies found that three natural compounds, namely, tannic acid, 3-isotheaflavin-3-gallate and theaflavin-3,3-digallate, are effective proteinase (3CLpro) inhibitors of SARS-CoV (IC50 <10 µM). Based on this information and due to the high sequence identity between SARS-CoV and SARS-CoV-2 3CLpro, these three compounds could be candidate inhibitors of SARS-CoV-2 3CLpro. This paper explores the structural and energetic features that guided the molecular recognition of these three compounds for dimeric SARS-CoV-2 and SARS-CoV 3CLpro, the functional state of this enzyme, using docking and MD simulations with the molecular mechanics-generalized-born surface area (MMGBSA) approach. Energetic analysis demonstrated that the three compounds reached good affinities in both systems in the following order: tannic acid > 3-isotheaflavin-3-gallate > theaflavin-3,3-digallate. This tendency is in line with that experimentally reported between these ligands and SARS-CoV 3CLpro. Therefore, tannic acid may have clinical usefulness against COVID-19 by acting as a potent inhibitor of SARS-CoV-2 3CLpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, Bangladesh
| |
Collapse
|
4
|
Abdullah Al Awadh A. Nucleotide and nucleoside-based drugs: past, present, and future. Saudi J Biol Sci 2022; 29:103481. [PMID: 36389209 PMCID: PMC9641258 DOI: 10.1016/j.sjbs.2022.103481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Nucleotide and nucleoside-based analogue drugs are widely used for the treatment of both acute and chronic viral infections. These drugs inhibit viral replication due to one or more distinct mechanisms. It modifies the virus's genetic structure by reducing viral capacity in every replication cycle. Their clinical success has shown strong effectiveness against several viruses, including ebolavirus, hepatitis C virus, HIV, MERS, SARS-Cov, and the most recent emergent SARS-Cov2. In this review, seven different types of inhibitors have been selected that show broad-spectrum activity against RNA viruses. A detailed overview and mechanism of actionof both analogues are given, and the clinical perspectives are discussed. These inhibitors incorporated the novel SARS-CoV-2 RdRp, further terminating the polymerase activity with variable efficacy. The recent study provides a molecular basis for the inhibitory activity of virus RdRp using nucleotide and nucleoside analogues inhibitors. Furthermore, to identify those drugs that need more research and development to combat novel infections. Consequently, there is a pressing need to focus on present drugs by establishing their cell cultures. If their potencies were evidenced, then they would be explored in the future as potential therapeutics for novel outbreaks.
Collapse
|
5
|
Gangadharan S, Ambrose JM, Rajajagadeesan A, Kullappan M, Patil S, Gandhamaneni SH, Veeraraghavan VP, Nakkella AK, Agarwal A, Jayaraman S, Surapaneni KM. Repurposing of potential antiviral drugs against RNA-dependent RNA polymerase of SARS-CoV-2 by computational approach. J Infect Public Health 2022; 15:1180-1191. [PMID: 36240528 PMCID: PMC9514006 DOI: 10.1016/j.jiph.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
The high incidences of COVID-19 cases are believed to be associated with high transmissibility rates, which emphasizes the need for the discovery of evidence-based antiviral therapies for curing the disease. The rationale of repurposing existing classes of antiviral small molecule therapeutics against SARS-CoV-2 infection has been expected to accelerate the tedious and expensive drug development process. While Remdesivir has been recently approved to be the first treatment option for specific groups of COVID-19 patients, combinatory therapy with potential antiviral drugs may be necessary to enhance the efficacy in different populations. Hence, a comprehensive list of investigational antimicrobial drug compounds such as Favipiravir, Fidaxomicin, Galidesivir, GC376, Ribavirin, Rifabutin, and Umifenovir were computationally evaluated in this study. We performed in silico docking and molecular dynamics simulation on the selected small molecules against RNA-dependent RNA polymerase, which is one of the key target proteins of SARS-CoV-2, using AutoDock and GROMACS. Interestingly, our results revealed that the macrocyclic antibiotic, Fidaxomicin, possesses the highest binding affinity with the lowest energy value of -8.97 kcal/mol binding to the same active sites of RdRp. GC376, Rifabutin, Umifenovir and Remdesivir were identified as the next best compounds. Therefore, the above-mentioned compounds could be considered good leads for further preclinical and clinical experimentations as potentially efficient antiviral inhibitors for combination therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sivakumar Gangadharan
- Department of Chemistry, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai 600123, Tamil Nadu, India.
| | - Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Anusha Rajajagadeesan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH-84095, USA; Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Sri Harshini Gandhamaneni
- Department of General Medicine, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Chennai 600123, Tamil Nadu, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Aruna Kumari Nakkella
- Department of Engineering Chemistry, Dr B R Ambedkar University, Etcherla, Srikakulam 532410, Andhra Pradesh, India.
| | - Alok Agarwal
- Department of Chemistry, Chinmaya Degree College, BHEL, Haridwar 249403, Uttarakhand, India.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, Tamil Nadu, India.
| |
Collapse
|
6
|
Kolben Y, Finkelshtein E, Naftali E, Kenig A, Kessler A, Cardoso F, Lisovoder N, Schwartz A, Elbirt D, Maayan S, Ilan Y. Codivir suppresses SARS-Cov-2 viral replication and stabilizes clinical outcome: In vitro and Phase I clinical trial results. Discoveries (Craiova) 2022; 10:e158. [PMID: 37457644 PMCID: PMC10348448 DOI: 10.15190/d.2022.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Treatment of severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) remains a significant challenge in the face of increased worldwide morbidity and mortality. The acute illness caused by SARS-CoV-2 is initiated by a viral phase, followed by an inflammatory phase. Numerous anti-inflammatory and anti-viral therapies, with a relatively minor clinical effect, have been applied. Developing a safe and efficient direct anti-viral treatment is essential as it can block disease progression before significant complications ensue and potentially prevent transmission. AIM The present phase 1 study aimed to determine the safety of Codivir, a newly developed anti-viral agent, and to preliminarily assess its anti-viral activity in patients infected by COVID-19. METHODS In vitro studies were conducted to determine the direct anti-viral effect of Codivir using an immunofluorescence-based assay and to assess its cytotoxic effect by tetrazolium assay (MTT). In a phase I clinical trial, Codivir was administered for ten days in 12 patients who were followed for its safety. Patients were followed for clinical manifestations during administration. Sequential nasal viral PCR titers (Cycle Threshold, CT) were determined preceding and during treatment. RESULTS In vitro, Codivir showed activity against SARS-CoV-2 with 90% viral replication suppression and minimal cytotoxicity. The anti-viral activity was demonstrated at the early stages of infection, post-entry of the virus in the cell. Codivir was safe in all 12 patients in phase I clinical trial and significantly suppressed viral replication in 5/7 fully assessed patients, with an anti-viral effect noted as early as three days. SUMMARY The present study's data support the safety of Codivir administration in humans and suggest its significant anti-COVID-19 effect. These results support the testing of the drug in more extensive controlled trials in patients with SARS-CoV-2.
Collapse
Affiliation(s)
- Yotam Kolben
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | | | | | - Ariel Kenig
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | - Asa Kessler
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | | | | | - Asaf Schwartz
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| | - Daniel Elbirt
- Clinical Immunology, Allergy and AIDS Center Kaplan Medical Center, Affiliated with Hadassah-Hebrew University Medical School Jerusalem, Rehovot, Israel
| | - Shlomo Maayan
- Division of infectious diseases, Barzilai University Medical Center, Ashkelon, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University Hadassah Medical Center, and the Department of Medicine, Hadassah Medical Center Jerusalem, Israel
| |
Collapse
|
7
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Repurposing of Four Drugs as Anti-SARS-CoV-2 Agents and Their Interactions with Protein Targets. Sci Pharm 2022. [DOI: 10.3390/scipharm90020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although there are existing vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), new COVID-19 cases are increasing due to low immunization coverage and the emergence of new variants. For this reason, new drugs to treat and prevent severe COVID-19 are needed. Here, we provide four different FDA-approved drugs against SARS-CoV-2 proteins involved in the entry and replication process, aiming to identify potential drugs to treat COVID-19. We use the main protease (Mpro), the spike glycoprotein (S protein), and RNA-dependent RNA polymerase (RdRp) as protein targets for anti- SARS-CoV-2 drugs. In our constructed database, we selected different drugs against each target (Mpro, S protein, and RdRp) based on their common interactions with relevant residues involved in viral entry at the host cell and replication. Furthermore, their stability inside the binding pocket, as well as their predicted binding-free energy, allow us to provide new insight into the possible drug repurposing of viomycin (interacting with Mpro) due to its interactions with key residues, such as Asn 143, Glu 166, and Gln 189 at the same time as hesperidin (interacting with the S protein) is interacting with residues Tyr 449, Ser 494, and Thr 500, keeping inside the predicted binding pocket, as well as interacting with residues in different variants of concern. Finally, we also suggest nystatin and elvitegravir (interacting with RdRp) as possible drugs due to their stability within the predicted pocket along the simulation and their interaction with key residues, such as Asp 760, Asp 761, and Asp 618. Altogether our results provide new knowledge about the possible mechanism of the inhibition of viomycin, hesperidin, elvitegravir, and nystatin to inhibit the viral life cycle of SARS-CoV-2 and some of its variants of concern (VOC). Additionally, some iodide-based contrast agents were also found to bind the S protein strongly, i.e., iohexol (−58.99 Kcal/mol), iotrolan (−76.19 Kcal/mol), and ioxilan (−62.37 Kcal/mol). Despite the information we report here as the possible strong interaction between these contrast agents and the SARS-CoV-2′s S protein, Mpro, and RdRp, we believe that further investigation, including chemical modifications in their structures, are needed for COVID-19 treatment.
Collapse
|
9
|
Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Das Mohapatra PK. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PL pro and M pro/ 3CL pro: molecular docking and simulation studies of three pertinent medicinal plant natural components. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100038. [PMID: 34870149 PMCID: PMC8178537 DOI: 10.1016/j.crphar.2021.100038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019 (COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work aims to study the molecular -docking and dynamic of three pertinent medicinal plants i.e. Eurycoma harmandiana, Sophora flavescens and Andrographis paniculata phyto-compounds against SARS-COV-2 papain-like protease (PLpro) and main protease (Mpro)/3-chymotrypsin-like protease (3CLpro). The interaction of protein targets and ligands was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020. Molecular docking with canthin-6-one 9-O-beta-glucopyranoside showed highest binding affinity and less binding energy with both PLpro and Mpro/3CLpro proteases and was subjected to molecular dynamic (MD) simulations for a period of 100ns. Stability of the protein-ligand complexes was evaluated by different analyses. The binding free energy calculated using MM-PBSA and the results showed that the molecule must have stable interactions with the protein binding site. ADMET analysis of the compounds suggested that it is having drug-like properties like high gastrointestinal (GI) absorption, no blood-brain barrier permeability and high lipophilicity. The outcome revealed that canthin-6-one 9-O-beta-glucopyranoside can be used as a potential natural drug against COVID-19 protease.
Collapse
Affiliation(s)
- Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Anshul Kamboj
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Periyasamy Panneerselvam
- Microbiology, Crop Production Division, ICAR- National Rice Research Institute, Cuttack, 753 006, Odisha, India
| | - Rakesh Shrivastav
- Department of Applied Sciences, NGF College of Engineering and Technology, Palwal, Haryana, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Pradeep K Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India.,PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
10
|
Tenofovir, Another Inexpensive, Well-Known and Widely Available Old Drug Repurposed for SARS-COV-2 Infection. Pharmaceuticals (Basel) 2021; 14:ph14050454. [PMID: 34064831 PMCID: PMC8150375 DOI: 10.3390/ph14050454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide with different clinical manifestations. Age and comorbidities may explain severity in critical cases and people living with human immunodeficiency virus (HIV) might be at particularly high risk for severe progression. Nonetheless, current data, although sometimes contradictory, do not confirm higher morbidity, risk of more severe COVID-19 or higher mortality in HIV-infected people with complete access to antiretroviral therapy (ART). A possible protective role of ART has been hypothesized to explain these observations. Anti-viral drugs used to treat HIV infection have been repurposed for COVID-19 treatment; this is also based on previous studies on severe acute respiratory syndrome virus (SARS-CoV) and Middle East respiratory syndrome virus (MERS-CoV). Among them, lopinavir/ritonavir, an inhibitor of viral protease, was extensively used early in the pandemic but it was soon abandoned due to lack of effectiveness in clinical trials. However, remdesivir, a nucleotide analog that acts as reverse-transcriptase inhibitor, which was tested early during the pandemic because of its wide range of antiviral activity against several RNA viruses and its safety profile, is currently the only antiviral medication approved for COVID-19. Tenofovir, another nucleotide analog used extensively for HIV treatment and pre-exposure prophylaxis (PrEP), has also been hypothesized as effective in COVID-19. No data on tenofovir's efficacy in coronavirus infections other than COVID-19 are currently available, although information relating to SARS-CoV-2 infection is starting to come out. Here, we review the currently available evidence on tenofovir's efficacy against SARS-CoV-2.
Collapse
|