1
|
Yao L, Chen T. A combined association of alanine aminotransferase, aspartate transaminase and bilirubin with sleep duration in aged 16-85 years (2005-2010). Medicine (Baltimore) 2024; 103:e40915. [PMID: 39654161 PMCID: PMC11630931 DOI: 10.1097/md.0000000000040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Sleep is a vital restorative process that plays a pivotal role in maintaining the delicate equilibrium of mental and physical well-being. Both short and long sleep duration are associated with a range of adverse health outcomes. Numerous studies have consistently demonstrated a robust association between sleep duration and liver disease. In this study, we conducted statistical tests and performed subgroup analyses to explore potential variations in this association across different contexts, aiming to elucidate the correlation between ALT, AST, and TB with sleep duration. This cross-sectional investigation utilized datasets from the National Health and Nutrition Examination Survey 2005 to 2010. Multivariate linear regression models were used to examine the linear association between ALT, AST, and TB with sleep duration. Test for interaction is commonly conducted using multivariabte models to assess statistically significant subgroup disparities. Fitted smoothied curves and threshold effect analyses were employed to depict nonlinear relationships. The study enrolled 17,491 participants aged 16 to 85 years who met the inclusion and exclusion criteria, with a mean age of the participants was 45.58 ± 19.94 years. Multivariate linear regression analysis showed a significant positive association between sleep duration and ALT [-0.23 (-0.45, -0.00) 0.0455] and AST[-0.20 (-0.38, -0.01) 0.0338] in Model 3. Using a two-segment linear regression model, we found an U-shaped relationship and significant inflection point between between ALT and AST with sleep duration. The present study unveiled a significant inverse correlation between sleep duration and levels of ALT and AST, while no significant association was observed with TB levels. Furthermore, variations in the optimal sleep duration for liver function recovery were identified across diverse populations, thereby offering valuable healthcare recommendations to public.
Collapse
Affiliation(s)
- Lishuai Yao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Chen
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Yan A, Li Z, Gao Y, Hu F, Han S, Liu F, Liu Z, Chen J, Yuan C, Zhou C. Isobicyclogermacrenal ameliorates hippocampal ferroptosis involvement in neurochemical disruptions and neuroinflammation induced by sleep deprivation in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156306. [PMID: 39647468 DOI: 10.1016/j.phymed.2024.156306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sleep deprivation (SLD) is a widespread condition that disrupts physiological functions and may increase mortality risk. Valeriana officinalis, a traditional medicinal herb known for its sedative and hypnotic properties, contains isobicyclogermacrenal (IG), a newly isolated active compound. However, research on the therapeutic potential of IG for treating SLD remains limited. METHODS In this study, IG was extracted and characterized from Valeriana officinalis, and an SLD model was established in rats using p-chlorophenylalanine (PCPA). Behavioral tests and pathological studies were conducted to assess the effects of IG on SLD, and transcriptomic and metabolomic analyses were utilized to investigate its underlying mechanisms. RESULTS IG administration significantly improved the cognitive performance of SLD rats in behavioral tests and ameliorated histological injuries in the hippocampus and cerebral cortex. IG treatment increased the levels of brain-derived neurotrophic factor (BDNF) and neurotransmitters such as serotonin (5-HT) in SLD rats. Additionally, IG directly targets TFRC, thereby improving iron metabolism in the hippocampus. Comprehensive transcriptomic and metabolomic analyses revealed that the improvements from IG stemmed from the mitigation of abnormalities in iron metabolism, cholesterol metabolism, and glutathione metabolism, leading to reduced oxidative stress, ferroptosis, and neuroinflammation in the hippocampus caused by SLD. CONCLUSIONS Collectively, these findings suggest that IG has the potential to ameliorate neurological damage and cognitive impairment caused by SLD, offering a novel strategy for protection against the adverse effects of SLD.
Collapse
Affiliation(s)
- Ao Yan
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhejin Li
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yuanwei Gao
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fanglong Hu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Shuo Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fengjie Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Chengyan Zhou
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Bajaj P, Kaur T, Singh AP, Kaur G. Acute sleep deprivation-induced hepatotoxicity and dyslipidemia in middle-aged female rats and its amelioration by butanol extract of Tinospora cordifolia. Lab Anim Res 2024; 40:29. [PMID: 39164744 PMCID: PMC11337769 DOI: 10.1186/s42826-024-00216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Sleep deprivation (SD) due to an unhealthy lifestyle poses an oxidative challenge and is closely associated with an increased risk and prevalence of different metabolic disorders. Although the negative consequences of SD are well reported on mental health little is known about its detrimental effects on liver function and lipid metabolism. Tinospora cordifolia is reported for its hepatoprotective activity in different pre-clinical model systems. The current study was designed to elucidate the cumulative effects of aging and acute SD on liver functions, oxidative stress, and lipid metabolism, and their management by butanol extract of T. cordifolia (B-TCE) using middle-aged female acyclic rats as the model system. RESULTS Rats were divided into 4 groups: (1) Vehicle-undisturbed (VUD) (2) Vehicle-sleep deprived (VSD) (3) B-TCE pre-treated sleep-deprived (TSD) (4) B-TCE pre-treated undisturbed sleep (TUD). TSD and TUD groups were given 35 mg/kg of B-TCE once daily for 15 days followed by 12 h of sleep deprivation (6 a.m.-6 p.m.) of VSD and TSD group animals using the gentle-handling method while VUD and TUD group animals were left undisturbed. SD of VSD group animals increased oxidative stress, liver function disruption, and dyslipidemia which were ameliorated by B-TCE pre-treatment. Further, B-TCE was observed to target AMPK and its downstream lipid metabolism pathways as well as the p-Akt/cyclinD1/p-bad pathway of cell survival as possible underlying mechanisms of its hepatoprotective activity. CONCLUSIONS These findings suggest that B-TCE being a multi-component extract may be a potential agent in curtailing sleep-related problems and preventing SD-associated hepatotoxicity and dyslipidemia in postmenopausal women.
Collapse
Affiliation(s)
- Payal Bajaj
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Tajpreet Kaur
- Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Gurcharan Kaur
- Medical Biotechnology Laboratory, Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
4
|
Chen S, Xie Y, Liang Z, Lu Y, Wang J, Xing F, Mao Y, Wei X, Wang Z, Yang J, Yuan J. A Narrative Review of the Reciprocal Relationship Between Sleep Deprivation and Chronic Pain: The Role of Oxidative Stress. J Pain Res 2024; 17:1785-1792. [PMID: 38799272 PMCID: PMC11122178 DOI: 10.2147/jpr.s455621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Sleep is crucial for human health, insufficient sleep or poor sleep quality may negatively affect sleep function and lead to a state of sleep deprivation. Sleep deprivation can result in various health problems, including chronic pain. The intricate relationship between sleep and pain is complex and intertwined, with daytime pain affecting sleep quality and poor sleep increasing pain intensity. The article first describes the influence of sleep on the onset and development of pain, and then explores the impact of daytime pain intensity on nighttime sleep quality and subsequent pain thresholds. However, the primary emphasis is placed on the pivotal role of oxidative stress in this bidirectional relationship. Although the exact mechanisms underlying sleep and chronic pain are unclear, this review focuses on the role of oxidative stress. Numerous studies on sleep deprivation have demonstrated that it can lead to varying degrees of increased pain sensitivity, while chronic pain leads to sleep deprivation and further exacerbates pain. Further research on the role of oxidative stress in the mechanism of sleep deprivation-induced pain sensitization seems reasonable. This article comprehensively reviews the current research on the interrelationship between sleep deprivation, pain and the crucial role of oxidative stress.
Collapse
Affiliation(s)
- Shuhan Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yanle Xie
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Zenghui Liang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yu Lu
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Jingping Wang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
5
|
Barbosa ÂP, Oliveira TM, Trindade PHE, Seidel SRT, Tokawa PKA, Jaramilo FM, Roncati NV, Baccarin RYA. Sleep Pattern Interference in the Cognitive Performance of Lusitano Horses. Animals (Basel) 2024; 14:334. [PMID: 38275793 PMCID: PMC10812765 DOI: 10.3390/ani14020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Like most mammalian, polyphasic sleep, equine sleep can be divided into two phases: the REM (rapid eye movement) phase and the NREM (non-rapid eye movement) phase. For this study, a randomized crossover experiment was conducted using ten purebred Lusitano horses, all dressage athletes aged from three to seven years old. The horses were filmed before the intervention to characterize their sleep patterns. REM sleep deprivation was achieved by not letting the horses attain sternal or lateral recumbency for three consecutive days, totaling 72 h. A spatial memory task and a visual attention test were performed. A recording time of 48 h appeared to be long enough to characterize the sleep patterns of the stalled horses. The total recumbency time of the studied population was lower than that previously reported in horses. Although the recumbency times before and after the intervention were similar, there was a tendency shown by the delta (p = 0.0839) towards an increased time needed to resolve spatial memory tasks in the sleep-deprived group. Future studies may deepen the understanding of horse sleep requirements and patterns, and the effects of environmental changes on horse sleep.
Collapse
Affiliation(s)
- Ângela P. Barbosa
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| | - Tiago M. Oliveira
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| | - Pedro Henrique E. Trindade
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade Estadual Paulista “Julio De Mesquita Filho” (UNESP), Botucatu 18618-687, SP, Brazil
| | - Sarah R. T. Seidel
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| | - Paula K. A. Tokawa
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| | - Fernando M. Jaramilo
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| | | | - Raquel Y. A. Baccarin
- Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade De São Paulo (USP), São Paulo 05508-270, SP, Brazil (R.Y.A.B.)
| |
Collapse
|
6
|
Urcar Gelen S, Ozkanlar S, Gedikli S, Atasever M. The investigation of the effects of monosodium glutamate on healthy rats and rats with STZ-induced diabetes. J Biochem Mol Toxicol 2024; 38:e23612. [PMID: 38084638 DOI: 10.1002/jbt.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Monosodium glutamate (MSG, E621) is a flavor-enhancing food additive used widely in the food preparation industry and consumed regularly. It is considered that long-term consumption of MSG causes metabolic syndrome and obesity. Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, polyuria, polydipsia, and polyphagia, in which insulin secreted from pancreatic β cells is inadequate for maintaining blood glucose homeostasis. Rats were application 65 mg/kg streptozotocin (STZ) solution intraperitoneally and a diabetes model was created. For this purpose, freshly prepared STZ was injected into the peritoneum. Tumor necrosis factor-α, interleukin (IL)-10, IL-6, and IL-1β levels in STZ, MSG, and STZ + MSG groups were found to be significantly increased in inflammation parameters measured on the 28th day of administration when compared to the Control Group (p < 0.001). Also, although malondialdehyde (MDA) levels increased significantly in the STZ + MSG group when compared to the control group (p < 0.001), glutathione (GSH), and superoxide dismutase (SOD) levels were significantly decreased in the STZ, MSG, and STZ + MSG groups when compared to the control group (p < 0.001). Also, although glucose levels increased significantly in STZ and STZ + MSG at the end of the 28th day (p < 0.01), insulin levels decreased in STZ, MSG, and STZ + MSG groups when compared to the control groups (p < 0.01). As a result, it was found that STZ and MSG application significantly increased cytokine production, increased MDA, which is an oxidant parameter in pancreatic tissue, and decreased antioxidants (GSH and SOD) when compared to the control groups. It was also found that MSG disrupted the normal histological structure in pancreatic cells, and the damage was much more in both exocrine and endocrine pancreatic areas in the STZ + MSG group when compared to the STZ and MSG groups. It was considered that with the increased use of MSG, the susceptibility to DM might increase along with tissue damage significantly in diabetic groups, therefore, MSG must be used in a limited and controlled manner.
Collapse
Affiliation(s)
- Sevda Urcar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Atasever
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
Neculicioiu VS, Colosi IA, Costache C, Toc DA, Sevastre-Berghian A, Colosi HA, Clichici S. Sleep Deprivation-Induced Oxidative Stress in Rat Models: A Scoping Systematic Review. Antioxidants (Basel) 2023; 12:1600. [PMID: 37627596 PMCID: PMC10451248 DOI: 10.3390/antiox12081600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sleep deprivation is highly prevalent in the modern world, possibly reaching epidemic proportions. While multiple theories regarding the roles of sleep exist (inactivity, energy conservation, restoration, brain plasticity and antioxidant), multiple unknowns still remain regarding the proposed antioxidant roles of sleep. The existing experimental evidence is often contradicting, with studies pointing both toward and against the presence of oxidative stress after sleep deprivation. The main goals of this review were to analyze the existing experimental data regarding the relationship between sleep deprivation and oxidative stress, to attempt to further clarify multiple aspects surrounding this relationship and to identify current knowledge gaps. Systematic searches were conducted in three major online databases for experimental studies performed on rat models with oxidative stress measurements, published between 2015 and 2022. A total of 54 studies were included in the review. Most results seem to point to changes in oxidative stress parameters after sleep deprivation, further suggesting an antioxidant role of sleep. Alterations in these parameters were observed in both paradoxical and total sleep deprivation protocols and in multiple rat strains. Furthermore, the effects of sleep deprivation seem to extend beyond the central nervous system, affecting multiple other body sites in the periphery. Sleep recovery seems to be characterized by an increased variability, with the presence of both normalizations in some parameters and long-lasting changes after sleep deprivation. Surprisingly, most studies revealed the presence of a stress response following sleep deprivation. However, the origin and the impact of the stress response during sleep deprivation remain somewhat unclear. While a definitive exclusion of the influence of the sleep deprivation protocol on the stress response is not possible, the available data seem to suggest that the observed stress response may be determined by sleep deprivation itself as opposed to the experimental conditions. Due to this fact, the observed oxidative changes could be attributed directly to sleep deprivation.
Collapse
Affiliation(s)
- Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Horațiu Alexandru Colosi
- Division of Medical Informatics and Biostatistics, Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Balan I, Bilger N, Saparov D, Hryb I, Abdyraimov A. Sleep Deprivation in Middle Age May Increase Dementia Risk: A Review. Cureus 2023; 15:e37425. [PMID: 37181993 PMCID: PMC10174673 DOI: 10.7759/cureus.37425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Neurodegenerative diseases present increasing interest in clinical practice for the aging population and involve dysregulation of sleep-wake behaviors. Approximately 5.8 million adults aged 65 and older were living with Alzheimer's disease (AD) in the United States in 2020 with increased mortality compared to the declining cardiovascular and cancer death rates. We conducted an extensive literature review to evaluate and synthesize evidence regarding the association between short sleep duration or sleep deprivation and the risk of developing all-cause dementia and Alzheimer's disease. There are multiple mechanisms describing brain damage, such as brain hypoxia, oxidative stress, or blood-brain barrier (BBB) impairment, induced by chronic sleep restriction (CSR) and the potential correlation with future cognitive decline and dementia. More studies are necessary to identify the specific factors involved in the sleep loss-cognitive decline association that could be taken into consideration while elaborating recommendations for dementia prevention measures.
Collapse
Affiliation(s)
- Irina Balan
- Geriatrics, Montefiore Medical Center, Wakefield Campus, Bronx, USA
| | - Nataliya Bilger
- Clinical Simulation Center, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, USA
| | - Dosbai Saparov
- Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, USA
| | - Ihor Hryb
- Neuroscience, University of Minnesota, Minneapolis, USA
| | - Azamat Abdyraimov
- Biostatistics and Epidemiology, Ala-Too International University, Bishkek, KGZ
| |
Collapse
|
9
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|