1
|
Antonicelli G, Vasile N, Piro E, Fraterrigo Garofalo S, Menin B, Verga F, Pirri F, Agostino V. Harnessing an adapted strain of Clostridium carboxidivorans to unlock hexanol production from carbon dioxide and hydrogen in elevated-pressure stirred tank reactors. BIORESOURCE TECHNOLOGY 2024; 418:131966. [PMID: 39662847 DOI: 10.1016/j.biortech.2024.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
To successfully scale-up the production of bio-based building blocks through CO2 and H2-based gas fermentation, it is crucial to deeply understand and control the microbial catalyst response to the bioreactor environment. This study investigates the effects of key process parameters, such as CO2 and H2 partial pressures, gas feeding strategies, and mixture composition, on the production pathways of an evolved Clostridium carboxidivorans strain. The ultimate goal is to optimize 1-hexanol production in elevated-pressure stirred-tank reactors. Continuous gas feeding enhanced acetogenic and solventogenic metabolisms, while gas-limited conditions promoted chain elongation to caproic acid. An optimized process, combining an initial gas-limited step followed by a continuous gas phase, increased 1-hexanol production, achieving a maximum biomass-specific productivity of 0.9 g gCDW-1 day-1. In-situ product extraction improved 1-hexanol carbon selectivity to an unprecedented 60 %. These findings demonstrate the potential of CO2 and H2-fed fermentation to produce high-value chemicals other than ethanol and acetate.
Collapse
Affiliation(s)
- G Antonicelli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - N Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - E Piro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Life Sciences and Systems Biology, University of Turin, Via Verdi 8, Turin 10124, Italy.
| | - S Fraterrigo Garofalo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - B Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Institute of Agricultural Biology and Biotechnology, National Research Council, CNR-IBBA, Via Alfonso Corti 12, Milano 20133, Italy.
| | - F Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - F Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - V Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy.
| |
Collapse
|
2
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Lanzillo F, Pisacane S, Capilla M, Raganati F, Russo ME, Salatino P, Marzocchella A. Continuous H-B-E fermentation by Clostridium carboxidivorans: CO vs syngas. N Biotechnol 2024; 81:1-9. [PMID: 38401749 DOI: 10.1016/j.nbt.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Leveraging renewable carbon-based resources for energy and chemical production is a promising approach to decrease reliance on fossil fuels. This entails a thermo/biotechnological procedure wherein bacteria, notably Clostridia, ferment syngas, converting CO or CO2 + H2 into Hexanol, Butanol and Ethanol (H-B-E fermentation). This work reports of Clostridium carboxidivorans performance in a stirred tank reactor continuously operated with respect to the gas and the cell/liquid phases. The primary objective was to assess acid and solvent production at pH 5.6 by feeding pure CO or synthetic syngas under gas flow differential conditions. Fermentation tests were conducted at four different dilution rates (DL) of the fresh medium in the range 0.034-0.25 h-1. The fermentation pathways of C. carboxidivorans were found to be nearly identical for both CO and syngas, with consistent growth and metabolite production at pH 5.6 within a range of dilution rates. Wash-out conditions were observed at a DL of 0.25 h-1 regardless of the carbon source. Ethanol was the predominant solvent produced, but a shift towards butanol production was observed with CO as the substrate and towards hexanol production with synthetic syngas. In particular, the maximum cell concentration (0.5 gDM/L) was obtained with pure CO at DL 0.05 h-1; the highest solvent productivity (60 mg/L*h of total solvent) was obtained at DL 0.17 h-1 by using synthetic syngas as C-source. The findings highlight the importance of substrate composition and operating conditions in syngas fermentation processes. These insights contribute to the optimization of syngas fermentation processes for biofuel and chemical production.
Collapse
Affiliation(s)
- F Lanzillo
- Department of Chemical, Materials and Production Engineering-Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - S Pisacane
- Department of Chemical, Materials and Production Engineering-Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - M Capilla
- Department of Chemical Engineering, University of Valencia, Burjassot 46100, Spain
| | - F Raganati
- Department of Chemical, Materials and Production Engineering-Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy.
| | - M E Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - P Salatino
- Department of Chemical, Materials and Production Engineering-Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| | - A Marzocchella
- Department of Chemical, Materials and Production Engineering-Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
4
|
de Leeuw KD, van Willigen MJW, Vrauwdeunt T, Strik DPPTB. CO 2 supply is a powerful tool to control homoacetogenesis, chain elongation and solventogenesis in ethanol and carboxylate fed reactor microbiomes. Front Bioeng Biotechnol 2024; 12:1329288. [PMID: 38720876 PMCID: PMC11076876 DOI: 10.3389/fbioe.2024.1329288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Anaerobic fermentation technology enables the production of medium chain carboxylates and alcohols through microbial chain elongation. This involves steering reactor microbiomes to yield desired products, with CO2 supply playing a crucial role in controlling ethanol-based chain elongation and facilitating various bioprocesses simultaneously. In the absence of CO2 supply (Phase I), chain elongation predominantly led to n-caproate with a high selectivity of 96 Cmol%, albeit leaving approximately 80% of ethanol unconverted. During this phase, C. kluyveri and Proteiniphilum-related species dominated the reactors. In Phase II, with low CO2 input (2.0 NmL L-1 min-1), formation of n-butyrate, butanol, and hexanol was stimulated. Increasing CO2 doses in Phase III (6 NmL L-1 min-1) led to CO2 utilization via homoacetogenesis, coinciding with the enrichment of Clostridium luticellarii, a bacterium that can use CO2 as an electron acceptor. Lowering CO2 dose to 0.5 NmL L-1 min-1 led to a shift in microbiome composition, diminishing the dominance of C. luticellarii while increasing C. kluyveri abundance. Additionally, other Clostridia, Proteiniphilum, and Lactobacillus sakei-related species became prevalent. This decrease in CO2 load from 6 to 0.5 NmL L-1 min-1 minimized excessive ethanol oxidation from 30%-50% to 0%-3%, restoring a microbiome favoring net n-butyrate consumption and n-caproate production. The decreased ethanol oxidation coincided with the resurgence of hydrogen formation at partial pressures above 1%. High concentrations of butyrate, caproate, and ethanol in the reactor, along with low acetate concentration, promoted the formation of butanol and hexanol. It is evident that CO2 supply is indispensable for controlling chain elongation in an open culture and it can be harnessed to stimulate higher alcohol formation or induce CO2 utilization as an electron acceptor.
Collapse
Affiliation(s)
- Kasper D. de Leeuw
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
- ChainCraft B.V., Amsterdam, Netherlands
| | | | - Ton Vrauwdeunt
- Environmental Technology, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
5
|
Shi X, Wei W, Wu L, Huang Y, Ni BJ. Biosynthesis mechanisms of medium-chain carboxylic acids and alcohols in anaerobic microalgae fermentation regulated by pH conditions. Appl Environ Microbiol 2024; 90:e0125023. [PMID: 38112479 PMCID: PMC10807445 DOI: 10.1128/aem.01250-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.
Collapse
Affiliation(s)
- Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yuhan Huang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kottenhahn P, Philipps G, Bunk B, Spröer C, Jennewein S. The Restriction-Modification Systems of Clostridium carboxidivorans P7. Microorganisms 2023; 11:2962. [PMID: 38138106 PMCID: PMC10745947 DOI: 10.3390/microorganisms11122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Clostridium carboxidivorans P7 (DSM 15243) is a bacterium that converts syngas (a mixture of CO, H2, and CO2) into hexanol. An optimized and scaled-up industrial process could therefore provide a renewable source of fuels and chemicals while consuming industry waste gases. However, the genetic engineering of this bacterium is hindered by its multiple restriction-modification (RM) systems: the genome of C. carboxidivorans encodes at least ten restriction enzymes and eight methyltransferases (MTases). To gain insight into the complex RM systems of C. carboxidivorans, we analyzed genomic methylation patterns using single-molecule real-time (SMRT) sequencing and bisulfite sequencing. We identified six methylated sequence motifs. To match the methylation sites to the predicted MTases of C. carboxidivorans, we expressed them individually in Escherichia coli for functional characterization. Recognition motifs were identified for all three Type I MTases (CAYNNNNNCTGC/GCAGNNNNNRTG, CCANNNNNNNNTCG/CGANNNNNNNNTGG and GCANNNNNNNTNNCG/CGNNANNNNNNNTGC), two Type II MTases (GATAAT and CRAAAAR), and a single Type III MTase (GAAAT). However, no methylated recognition motif was found for one of the three Type II enzymes. One recognition motif that was methylated in C. carboxidivorans but not in E. coli (AGAAGC) was matched to the remaining Type III MTase through a process of elimination. Understanding these enzymes and the corresponding recognition sites will facilitate the development of genetic tools for C. carboxidivorans that can accelerate the industrial exploitation of this strain.
Collapse
Affiliation(s)
- Patrick Kottenhahn
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 52074 Aachen, Germany
- Department of Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriele Philipps
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 52074 Aachen, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Culture Collection for Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Stefan Jennewein
- Department of Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 52074 Aachen, Germany
| |
Collapse
|
7
|
Antonicelli G, Ricci L, Tarraran L, Fraterrigo Garofalo S, Re A, Vasile NS, Verga F, Pirri CF, Menin B, Agostino V. Expanding the product portfolio of carbon dioxide and hydrogen-based gas fermentation with an evolved strain of Clostridium carboxidivorans. BIORESOURCE TECHNOLOGY 2023; 387:129689. [PMID: 37597573 DOI: 10.1016/j.biortech.2023.129689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
CO2:H2-based gas fermentation with acetogenic Clostridium species are at an early stage of development. This work exploited the Adaptive Laboratory Evolution technique to improve the growth of C. carboxidivorans P7 on CO2 and H2. An adapted strain with decreased growth lag phase and improved biomass production was obtained. Genomic analysis revealed a conserved frameshift mutation in the catalytic subunit of the hexameric hydrogenase gene. The resulted truncated protein variant, most likely lacking its functionality, suggests that other hydrogenases might be more efficient for H2-based growth of this strain. Furthermore, the adapted strain generated hexanol as primary fermentation product. For the first time, hexanol was produced directly from CO2:H2 blend, achieving the highest maximum productivity reported so far via gas fermentation. Traces of valerate, pentanol, eptanol and octanol were observed in the fermentation broth. The adapted strain shows promising to enrich the product spectrum targetable by future gas fermentation processes.
Collapse
Affiliation(s)
- G Antonicelli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - L Ricci
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
| | - L Tarraran
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - S Fraterrigo Garofalo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - A Re
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - N S Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - F Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - C F Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - B Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy; Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Alfonso Corti 12, 20133 Milan, Italy
| | - V Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy.
| |
Collapse
|
8
|
Bäumler M, Burgmaier V, Herrmann F, Mentges J, Schneider M, Ehrenreich A, Liebl W, Weuster-Botz D. Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors. Microorganisms 2023; 11:1003. [PMID: 37110426 PMCID: PMC10144111 DOI: 10.3390/microorganisms11041003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Syngas fermentation with clostridial co-cultures is promising for the conversion of CO to alcohols. A CO sensitivity study with Clostridium kluyveri monocultures in batch operated stirred-tank bioreactors revealed total growth inhibition of C. kluyveri already at 100 mbar CO, but stable biomass concentrations and ongoing chain elongation at 800 mbar CO. On/off-gassing with CO indicated a reversible inhibition of C. kluyveri. A continuous supply of sulfide led to increased autotrophic growth and ethanol formation by Clostridium carboxidivorans even at unfavorable low CO concentrations. Based on these results, a continuously operated cascade of two stirred-tank reactors was established with a synthetic co-culture of both Clostridia. An amount of 100 mbar CO and additional sulfide supply enabled growth and chain elongation in the first bioreactor, whereas 800 mbar CO resulted in an efficient reduction of organic acids and de-novo synthesis of C2-C6 alcohols in the second reactor. High alcohol/acid ratios of 4.5-9.1 (w/w) were achieved in the steady state of the cascade process, and the space-time yields of the alcohols produced were improved by factors of 1.9-5.3 compared to a batch process. Further improvement of continuous production of medium chain alcohols from CO may be possible by applying less CO-sensitive chain-elongating bacteria in co-cultures.
Collapse
Affiliation(s)
- Miriam Bäumler
- Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany; (M.B.); (V.B.); (F.H.); (J.M.)
| | - Veronika Burgmaier
- Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany; (M.B.); (V.B.); (F.H.); (J.M.)
| | - Fabian Herrmann
- Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany; (M.B.); (V.B.); (F.H.); (J.M.)
| | - Julian Mentges
- Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany; (M.B.); (V.B.); (F.H.); (J.M.)
| | - Martina Schneider
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (M.S.); (A.E.); (W.L.)
| | - Armin Ehrenreich
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (M.S.); (A.E.); (W.L.)
| | - Wolfgang Liebl
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; (M.S.); (A.E.); (W.L.)
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany; (M.B.); (V.B.); (F.H.); (J.M.)
| |
Collapse
|
9
|
Oh HJ, Gong G, Ahn JH, Ko JK, Lee SM, Um Y. Effective hexanol production from carbon monoxide using extractive fermentation with Clostridium carboxidivorans P7. BIORESOURCE TECHNOLOGY 2023; 367:128201. [PMID: 36374655 DOI: 10.1016/j.biortech.2022.128201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study achieved high production of hexanol via gas fermentation using Clostridium carboxidivorans P7 by extracting hexanol from the fermentation broth. The hexanol extraction efficiency and inhibitory effects on C. carboxidivorans P7 of 2-butyl-1-octanol, hexyl hexanoate and oleyl alcohol were examined, and oleyl alcohol was selected as the extraction solvent. Oleyl alcohol was added at the beginning of fermentation and during fermentation or a small volume of oleyl alcohol was repeatedly added during fermentation. The addition of a small volume of oleyl alcohol during fermentation was the most effective for CO consumption and hexanol production (5.06 g/L), yielding the highest known hexanol titer through any type of fermentation including gas fermentation. Hexanol production was further enhanced to 8.45 g/L with the repeated addition of oleyl alcohol and ethanol during gas fermentation. The results of this study will enable sustainable and carbon-neutral hexanol production via gas fermentation.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nat Commun 2022; 13:3058. [PMID: 35650184 PMCID: PMC9160091 DOI: 10.1038/s41467-022-30571-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Carbon-negative synthesis of biochemical products has the potential to mitigate global CO2 emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL−1), as well as hexanoic acid (3.06 ± 0.03 gL−1) and 1-hexanol (1.0 ± 0.1 gL−1) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL−1 in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. An attractive route for carbon-negative synthesis of biochemical products is the reverse β-oxidation pathway coupled to the Wood-Ljungdahl pathway. Here the authors use a high-throughput in vitro prototyping workflow to screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity.
Collapse
|
11
|
Vees CA, Herwig C, Pflügl S. Mixotrophic co-utilization of glucose and carbon monoxide boosts ethanol and butanol productivity of continuous Clostridium carboxidivorans cultures. BIORESOURCE TECHNOLOGY 2022; 353:127138. [PMID: 35405210 DOI: 10.1016/j.biortech.2022.127138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, continuous cultivations of C.carboxidivorans to study heterotrophic and mixotrophic conversion of glucose and H2, CO2, and CO were established. Glucose fermentations at pH 6 showed a high ratio of alcohol-to-acid production of 2.79 mol mol-1. While H2 or CO2 were not utilized together with glucose, CO feeding drastically increased the combined alcohol titer to 9.1 g l-1. Specifically, CO enhanced acetate (1.9-fold) and ethanol (1.7-fold) production and triggered chain elongation to butanol (1.5-fold) production but did not change the alcohol:acid ratio. Flux balance analysis showed that CO served both as a carbon and energy source, and CO mixotrophy displayed a carbon and energy efficiency of 45 and 77%, respectively. This study expands the knowledge on physiology and metabolism of C.carboxidivorans and can serve as the starting point for rational engineering and process intensification to establish efficient production of alcohols and acids from carbon waste.
Collapse
Affiliation(s)
- Charlotte Anne Vees
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| | - Christoph Herwig
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Stefan Pflügl
- Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
12
|
Lauer I, Philipps G, Jennewein S. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO 2 and H 2. Microb Cell Fact 2022; 21:85. [PMID: 35568911 PMCID: PMC9107641 DOI: 10.1186/s12934-022-01802-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO2 as carbon source. However the conversion into high titers of butanol and hexanol is challenging. RESULTS Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L-1 butanol and 133 mg L-1 hexanol from fructose in complex medium, and 174 mg L-1 butanol and 15 mg L-1 hexanol from gaseous substrate (20% CO2 and 80% H2) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L-1) at the expense of butanol (158 mg L-1), when grown on CO2 and H2 in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L-1 butanol and 393 mg L-1 hexanol. CONCLUSIONS We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.
Collapse
Affiliation(s)
- Ira Lauer
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Gabriele Philipps
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Stefan Jennewein
- Department for Industrial Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Tarasava K, Lee SH, Chen J, Köpke M, Jewett MC, Gonzalez R. Reverse β-oxidation pathways for efficient chemical production. J Ind Microbiol Biotechnol 2022; 49:6537408. [PMID: 35218187 PMCID: PMC9118988 DOI: 10.1093/jimb/kuac003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
Microbial production of fuels, chemicals, and materials has the potential to reduce greenhouse gas emissions and contribute to a sustainable bioeconomy. While synthetic biology allows readjusting of native metabolic pathways for the synthesis of desired products, often these native pathways do not support maximum efficiency and are affected by complex regulatory mechanisms. A synthetic or engineered pathway that allows modular synthesis of versatile bioproducts with minimal enzyme requirement and regulation while achieving high carbon and energy efficiency could be an alternative solution to address these issues. The reverse β-oxidation (rBOX) pathways enable iterative non-decarboxylative elongation of carbon molecules of varying chain lengths and functional groups with only four core enzymes and no ATP requirement. Here, we describe recent developments in rBOX pathway engineering to produce alcohols and carboxylic acids with diverse functional groups, along with other commercially important molecules such as polyketides. We discuss the application of rBOX beyond the pathway itself by its interfacing with various carbon-utilization pathways and deployment in different organisms, which allows feedstock diversification from sugars to glycerol, carbon dioxide, methane, and other substrates.
Collapse
Affiliation(s)
- Katia Tarasava
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Seung Hwan Lee
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Jing Chen
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | | | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
14
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|