1
|
Tsolele R, Arotiba OA, Malinga SP. Improving selectivity and antifouling properties of a PES hollow fibre membrane with a photo-enzyme for the removal of ciprofloxacin and sulfamethoxazole. ENVIRONMENTAL TECHNOLOGY 2024:1-24. [PMID: 38830144 DOI: 10.1080/09593330.2024.2360231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
A multifunctional hollow fibre was prepared by the modification of polyethersulfone (PES) with laccase (Lac) and phosphorus-doped graphitic carbon nitride (P-gC3N4) for the removal of ciprofloxacin and sulfamethoxazole. The properties and structure elucidation of the prepared membranes were evaluated using contact angle analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), correlative light electron microscopy (CLEM), atomic force microscopy (AFM), tensile strength, water-intake capacity, and pure water flux. The modified multifunctional hollow fibre membranes showed increased root mean square surface roughness from 50 nm for neat PES to 104 nm, which contributed to the significantly higher water flux of 90 L.m-2h-1 compared to 54 L.m-2h-1 for pristine PES. The hydrophilicity also improved after modification as the contact angle reduced from 72° ± 1.01° to 42° ± 2.26°. The modified hollow fibre membranes showed an enhanced removal of ciprofloxacin (77%) and sulfamethoxazole (80%). Moreover, antifouling properties towards bovine serum albumin were 89% for FRR, 7% for Rr, 9% for Rir and 17% for Rt. Regeneration studies showed that the multifunctional hollow fibre membrane obtained a high removal percentage of 79% towards sulfamethoxazole after five cycles. Hence, this work proposes a new system that can be successfully utilized in the treatment of emerging pharmaceutical pollutants in water.
Collapse
Affiliation(s)
- R Tsolele
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - O A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - S P Malinga
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Zhao Y, Liu C, Deng J, Zhang P, Feng S, Chen Y. Green and Sustainable Forward Osmosis Process for the Concentration of Apple Juice Using Sodium Lactate as Draw Solution. MEMBRANES 2024; 14:106. [PMID: 38786940 PMCID: PMC11122952 DOI: 10.3390/membranes14050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
China is the world's largest producer and exporter of concentrated apple juice (CAJ). However, traditional concentration methods such as vacuum evaporation (VE) and freeze concentration cause the loss of essential nutrients and heat-sensitive components with high energy consumption. A green and effective technique is thus desired for juice concentration to improve product quality and sustainability. In this study, a hybrid forward osmosis-membrane distillation (FO-MD) process was explored for the concentration of apple juice using sodium lactate (L-NaLa) as a renewable draw solute. As a result, commercial apple juice could be concentrated up to 65 °Brix by the FO process with an average flux of 2.5 L·m-2·h-1. Most of the nutritional and volatile compounds were well retained in this process, while a significant deterioration in product quality was observed in products obtained by VE concentration. It was also found that membrane fouling in the FO concentration process was reversible, and a periodical UP water flush could remove most of the contaminants on the membrane surface to achieve a flux restoration of more than 95%. In addition, the L-NaLa draw solution could be regenerated by a vacuum membrane distillation (VMD) process with an average flux of around 7.87 L∙m-2∙h-1 for multiple reuse, which further enhanced the long-term sustainability of the hybrid process.
Collapse
Affiliation(s)
- Yuhang Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Jianju Deng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Panpan Zhang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Shiyuan Feng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| | - Yu Chen
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
- Low Cost Wastewater Treatment Technology International Science and Technology Cooperation Base of Sichuan Province, Mianyang 621010, China
| |
Collapse
|
3
|
Casino P, López A, Peiró S, Rios S, Porta A, Agustí G, Terlevich D, Asensio D, Marqués AM, Piqué N. Polyethersulfone (PES) Filters Improve the Recovery of Legionella spp. and Enhance Selectivity against Interfering Microorganisms in Water Samples. Polymers (Basel) 2023; 15:2670. [PMID: 37376316 DOI: 10.3390/polym15122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the analysis of water samples, the type of filtration membrane material can influence the recovery of Legionella species, although this issue has been poorly investigated. Filtration membranes (0.45 µm) from different materials and manufacturers (numbered as 1, 2, 3, 4, and 5) were compared: mixed cellulose esters (MCEs), nitrocellulose (NC), and polyethersulfone (PES). After membrane filtration of samples, filters were placed directly onto GVPC agar and incubated at 36 ± 2 °C. The highest mean counts of colony-forming units and colony sizes for Legionella pneumophila and Legionella anisa were obtained with PES filters (p < 0.001). All membranes placed on GVPC agar totally inhibited Escherichia coli and Enterococcus faecalis ATCC 19443 and ATCC 29212, whereas only the PES filter from manufacturer 3 (3-PES) totally inhibited Pseudomonas aeruginosa. PES membrane performance also differed according to the manufacturer, with 3-PES providing the best productivity and selectivity. In real water samples, 3-PES also produced a higher Legionella recovery and better inhibition of interfering microorganisms. These results support the use of PES membranes in methods where the filter is placed directly on the culture media and not only in procedures where membrane filtration is followed by a washing step (according to ISO 11731:2017).
Collapse
Affiliation(s)
- Pablo Casino
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Asunción López
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Sara Peiró
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Santiago Rios
- Department of Statistics, Biology Faculty, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Catalonia, Spain
| | - Aldous Porta
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Gemma Agustí
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Daniela Terlevich
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Daniel Asensio
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD), Josep Tura, 9H, Polígon Industrial Mas d'en Cisa, Sentmenat, 08181 Barcelona, Catalonia, Spain
| | - Ana María Marqués
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
| | - Núria Piqué
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, 08921 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Shami R, Sabir A, Iqbal SS, Gull N, Zohra R, Khan SM. Synergistic effect of GO/ZnO loading on the performance of cellulose acetate/chitosan blended reverse osmosis membranes for NOM rejection. Heliyon 2023; 9:e13736. [PMID: 36873556 PMCID: PMC9976315 DOI: 10.1016/j.heliyon.2023.e13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Declining freshwater resources along with their pollution are threatening the life existence on earth. To meet the freshwater demand, one of the most appropriate and possible ways which has been adopted all over the world is to reuse wastewater by removing its impurities. Among many water pollutants, natural organic matter (NOM) is found to be responsible as major precursor for the formation of other pollutants. Removal of NOM from wastewater is being done by using membrane filtration systems incorporated with certain nanofillers to increase membranes efficiency and permeability. In this study, novel nanocomposite reverse osmosis (RO) membranes were prepared using cellulose acetate and chitosan in N,N-Dimethyl formamide. Graphene oxide (GO) nanosheets and zinc oxide (ZnO) in different concentration were loaded to modify the membranes for tuning their RO performance. The confirmation of the functional groups is demonstrated by Fourier transform infrared spectroscopy which revealed the specific peaks indicating the formation of the nano-composite membranes. The surface morphology was studied by scanning electronic microscopy which shows a gradual transformation of the membrane surface from voids-free to macro-voids filled surface up to threshold concentration of GO and ZnO. The thermal properties of GO based membranes were analyzed using thermogravimetric analysis and differential scanning calorimetry. The uniform interaction of the GO and ZnO with polymers induced the remarkable thermal properties of the synthesized membranes. Permeate flux and contact angle measurements were considered to estimate their water content (96%) capacity and NOM rejection (96%) using 0.1 ppm humic acid solution. The permeate flux, NOM rejection and the water content changed directly with GO and inversely with ZnO wt% in the membranes up to GO5 (GO:0.14: ZnO:0.03) whereas the contact angle exhibited the inverse relationship with GO and ZnO concentration in casting solution of the synthesized membranes. Hence it can be concluded that prepared RO membranes are suitable for NOM rejection and recommended for water treatment.
Collapse
Affiliation(s)
- Rizwana Shami
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan.,Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Aneela Sabir
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Sadia Sagar Iqbal
- Department of Physics, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Rubab Zohra
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Huang X, Tian F, Chen G, Wang F, Weng R, Xi B. Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO 2 Nanoparticles. MEMBRANES 2021; 12:42. [PMID: 35054568 PMCID: PMC8780500 DOI: 10.3390/membranes12010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 12/07/2022]
Abstract
It is of great significance to search for efficient, renewable, biodegradable and economical membrane materials. Herein, we developed an organic-inorganic hybrid regenerated cellulose membrane (ZrO2/BCM) with excellent hydrophilic and anti-fouling properties. The membrane was prepared by introducing ZrO2 particles into an N-Methylmorpholine-N-oxide(NMMO)/bamboo cellulose(BC) solution system by the phase inversion method. The physi-chemical structure of the membranes were characterized based on thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (ATR-FTIR), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The modified regenerated cellulose membrane has the excellent rejection of bovine serum albumin (BSA) and anti-fouling performance. The membrane flux of ZrO2/BCM is 321.49 (L/m2·h), and the rejection rate of BSA is 91.2%. Moreover, the membrane flux recovery rate after cleaning with deionized water was 90.6%. This new type of separation membrane prepared with green materials holds broad application potential in water purification and wastewater treatment.
Collapse
Affiliation(s)
- Xin Huang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.H.); (F.T.); (G.C.); (F.W.)
| | - Feng Tian
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.H.); (F.T.); (G.C.); (F.W.)
| | - Guohong Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.H.); (F.T.); (G.C.); (F.W.)
| | - Fanan Wang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.H.); (F.T.); (G.C.); (F.W.)
| | - Rengui Weng
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (X.H.); (F.T.); (G.C.); (F.W.)
| | - Beidou Xi
- Fujian Eco-Materials Engineering Research Center, Fujian University of Technology, Fuzhou 350118, China
| |
Collapse
|