1
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Gupta R, Arora K, Mehrotra Arora N, Kundu P. Significance of VLPs in Vlp-circRNA vaccines: a vaccine candidate or delivery vehicle? RNA Biol 2024; 21:17-28. [PMID: 39240021 PMCID: PMC11382717 DOI: 10.1080/15476286.2024.2399307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.
Collapse
Affiliation(s)
- Reeshu Gupta
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Kajal Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Nupur Mehrotra Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Prabuddha Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| |
Collapse
|
3
|
Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses. Rev Med Virol 2024; 34:e2498. [PMID: 38116958 DOI: 10.1002/rmv.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Manel Ben M'hadheb
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Differding E. Biotechnology in India: An Analysis of 'Biotechnology Industry Research Assistance Council' (BIRAC)-Supported Projects. Chembiochem 2023; 24:e202300302. [PMID: 37668561 DOI: 10.1002/cbic.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
A comprehensive analysis of 2165 projects funded by India's Department of Biotechnology since 2005 through private-public partnerships, and as of 2012 through the 'Biotechnology Industry Research Assistance Council (BIRAC)' until BIRAC's tenth anniversary at the end of March 2022 reveals details of the science and technology underpinning past and current biotechnology research and development projects in the country. They are led by human healthcare projects (74.9 % overall), of which medical technology (58.7 %) and therapeutics (24.5 %) are the main drivers, ahead of vaccines (4.3 %), regenerative medicine (3.9 %), public health (3.5 %) and others (5.1 %). Agricultural projects (15.2 % overall) have mainly been driven by plant breeding and cloning (24.6 %), animal biotechnology (20.4 %), agri-informatics (13.4 %), aquaculture (6.1 %), and (bio)fertilizers (4.3 %). The key components of industrial biotechnology (9.9 % overall) have been fine chemicals (44.7 %), environmental projects (23.3 %), clean energy (18.1 %) and industrial enzymes (12.1 %). Analysis of the projects funded pre- versus post-2017, compared to the distribution of equity funding as of early 2022 identifies trends in terms of growth areas and locations of industrial biotechnology projects and activities in India.
Collapse
Affiliation(s)
- Edmond Differding
- Differding Consulting, 12, Rue de Moutfort, L-5310, Contern, Luxembourg
| |
Collapse
|
5
|
Kumar D, Roy SS, Rastogi R, Arora K, Undale A, Gupta R, Arora NM, Kundu PK. VLP-ELISA for the Detection of IgG Antibodies against Spike, Envelope, and Membrane Antigens of SARS-CoV-2 in Indian Population. Vaccines (Basel) 2023; 11:vaccines11040743. [PMID: 37112655 PMCID: PMC10145915 DOI: 10.3390/vaccines11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Serological methods to conduct epidemiological survey are often directed only against the spike protein. To overcome this limitation, we have designed PRAK-03202, a virus-like particle (VLP), by inserting three antigens (Spike, envelope and membrane) of SARS-CoV-2 into a highly characterized S. cerevisiae-based D-Crypt™ platform. Methods: Dot blot analysis was performed to confirm the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was measured using nanoparticle tracking analysis (NTA). The sensitivity of VLP-ELISA was evaluated in 100 COVID positive. PRAK-03202 was produced at a 5 L scale using fed-batch fermentation. Results: Dot blot confirmed the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was 1.21 × 109 mL−1. In samples collected >14 days after symptom onset, the sensitivity, specificity, and accuracy of VLP-ELISA were 96%. We did not observe any significant differences in sensitivity, specificity, and accuracy when post-COVID-19 samples were used as negative controls compared to pre-COVID-samples. At a scale of 5 L, the total yield of PRAK-03202 was 100–120 mg/L. Conclusion: In conclusion, we have successfully developed an in-house VLP-ELISA to detect IgG antibodies against three antigens of SARS-CoV-2 as a simple and affordable alternative test.
Collapse
Affiliation(s)
- Dilip Kumar
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Sourav Singha Roy
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Ruchir Rastogi
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Kajal Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Avinash Undale
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Reeshu Gupta
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Nupur Mehrotra Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Prabuddha K. Kundu
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Correspondence: or
| |
Collapse
|
6
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
7
|
Gao X, Xia Y, Liu X, Xu Y, Lu P, dong Z, Liu J, Liang G. A perspective on SARS-CoV-2 virus-like particles vaccines. Int Immunopharmacol 2023; 115:109650. [PMID: 36649673 PMCID: PMC9832101 DOI: 10.1016/j.intimp.2022.109650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first appeared in Wuhan, China, in December 2019. The 2019 coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2, has spread to almost all corners of the world at an alarming rate. Vaccination is important for the prevention and control of the COVID-19 pandemic. Efforts are underway worldwide to develop an effective vaccine against COVID-19 using both traditional and innovative vaccine strategies. Compared to other vaccine platforms, SARS-CoV-2 virus-like particles (VLPs )vaccines, as a new vaccine platform, have unique advantages: they have artificial nanostructures similar to natural SARS-CoV-2, which can stimulate good cellular and humoral immune responses in the organism; they have no viral nucleic acids, have good safety and thermal stability, and can be mass-produced and stored; their surfaces can be processed and modified, such as the adjuvant addition, etc.; they can be considered as an ideal platform for COVID-19 vaccine development. This review aims to shed light on the current knowledge and progress of VLPs vaccines against COVID-19, especially those undergoing clinical trials.
Collapse
Affiliation(s)
- Xiaoyang Gao
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China,School of Basic Medical Sciences, Henan University of Science & Technology, Luoyang 471023, China
| | - Yeting Xia
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaofang Liu
- The First People's Hospital of Nanyang Affiliated to Henan University, Nanyang 473000, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Pengyang Lu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhipeng dong
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Gaofeng Liang
- School of Basic Medical Sciences, Henan University of Science & Technology, Luoyang 471023, China.
| |
Collapse
|
8
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
9
|
Jaron M, Lehky M, Zarà M, Zaydowicz CN, Lak A, Ballmann R, Heine PA, Wenzel EV, Schneider KT, Bertoglio F, Kempter S, Köster RW, Barbieri SS, van den Heuvel J, Hust M, Dübel S, Schubert M. Baculovirus-Free SARS-CoV-2 Virus-like Particle Production in Insect Cells for Rapid Neutralization Assessment. Viruses 2022. [PMID: 36298643 DOI: 10.3390/v14102087/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.
Collapse
Affiliation(s)
- Marcel Jaron
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Michael Lehky
- Recombinant Protein Expression Platform, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marta Zarà
- Unit of Brain-Heart Axis, IRCCS Monzino Cardiology Center, Via C. Parea 4, 20138 Milano, Italy
| | - Chris Nicole Zaydowicz
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Rico Ballmann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Philip Alexander Heine
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | | | - Kai-Thomas Schneider
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Federico Bertoglio
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Susanne Kempter
- Department of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Reinhard Wolfgang Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis, IRCCS Monzino Cardiology Center, Via C. Parea 4, 20138 Milano, Italy
| | - Joop van den Heuvel
- Recombinant Protein Expression Platform, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Jaron M, Lehky M, Zarà M, Zaydowicz CN, Lak A, Ballmann R, Heine PA, Wenzel EV, Schneider KT, Bertoglio F, Kempter S, Köster RW, Barbieri SS, van den Heuvel J, Hust M, Dübel S, Schubert M. Baculovirus-Free SARS-CoV-2 Virus-like Particle Production in Insect Cells for Rapid Neutralization Assessment. Viruses 2022; 14:v14102087. [PMID: 36298643 PMCID: PMC9606917 DOI: 10.3390/v14102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical “Corona” aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.
Collapse
Affiliation(s)
- Marcel Jaron
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Michael Lehky
- Recombinant Protein Expression Platform, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marta Zarà
- Unit of Brain-Heart Axis, IRCCS Monzino Cardiology Center, Via C. Parea 4, 20138 Milano, Italy
| | - Chris Nicole Zaydowicz
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Rico Ballmann
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Philip Alexander Heine
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | | | - Kai-Thomas Schneider
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Federico Bertoglio
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Susanne Kempter
- Department of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Reinhard Wolfgang Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis, IRCCS Monzino Cardiology Center, Via C. Parea 4, 20138 Milano, Italy
| | - Joop van den Heuvel
- Recombinant Protein Expression Platform, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Stefan Dübel
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Maren Schubert
- Department of Biotechnology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
11
|
Sanyal G. Development of functionally relevant potency assays for monovalent and multivalent vaccines delivered by evolving technologies. NPJ Vaccines 2022; 7:50. [PMID: 35513416 PMCID: PMC9072649 DOI: 10.1038/s41541-022-00470-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022] Open
Abstract
A potency or potency-indicating assay is a regulatory requirement for the release of every lot of a vaccine. Potency is a critical quality attribute that is also monitored as a stability indicator of a vaccine product. In essence, a potency measurement is a test of the functional integrity of the antigen and is intended to ensure that the antigen retains immunocompetence, i.e., the ability to stimulate the desired immune response, in its final formulation. Despite its central importance, there is incomplete clarity about the definition and expectation of a potency assay. This article provides a perspective on the purpose, value, and challenges associated with potency testing for vaccines produced by new technologies. The focus is on messenger RNA vaccines in the light of experience gained with recombinant protein-based vaccines, which offer the opportunity to directly correlate in vitro antigenicity with in vivo immunogenicity. The challenges with developing immunologically relevant in vitro assays are discussed especially for multivalent vaccine products, the importance of which has been reinforced by the ongoing emergence of SARS-CoV-2 variants of concern. Immunoassay-based release of multivalent vaccine products, such as those containing multiple antigens from different variants or serotypes of the same virus, require antibodies that are selective for each antigen and do not significantly cross-react with the others. In the absence of such exclusively specific antibodies, alternative functional assays with demonstrable correlation to immunogenicity may be acceptable. Initiatives for geographically distributed vaccine technology facilities should include establishing these assay capabilities to enable rapid delivery of vaccines globally.
Collapse
Affiliation(s)
- Gautam Sanyal
- Vaccine Analytics, LLC, Kendall Park, NJ, USA. .,Bill and Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|