1
|
Udompat P, Srimuang K, Doungngern P, Thippamom N, Petcharat S, Rattanatumhi K, Khiewbanyang S, Taweewigyakarn P, Kripattanapong S, Ninwattana S, Supataragul A, Sterling SL, Klungthong C, Joonlasak K, Manasatienkij W, Cotrone TS, Fernandez S, Wacharapluesadee S, Putcharoen O. An unusual diarrheal outbreak in the community in Eastern Thailand caused by Norovirus GII.3[P25]. Virol J 2024; 21:21. [PMID: 38243289 PMCID: PMC10797983 DOI: 10.1186/s12985-024-02296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Sentinel laboratory surveillance for diarrheal disease determined norovirus to be the most common cause of non-bacterial gastroenteritis in people during the COVID-19 pandemic in Thailand. An increase in patients presenting with diarrhea and vomiting in hospitals across Chanthaburi province between December 2021 and January 2022 led to the need for the identification of viral pathogens that may be responsible for the outbreak. METHODS Fecal samples (rectal swabs or stool) from 93 patients, of which 65 patients were collected during the December 2021 to January 2022 outbreak, were collected and screened for viral infection by real-time RT-PCR. Positive samples for norovirus GII were then genotyped by targeted amplification and sequencing of partial polymerase and capsid genes. Full genome sequencing was performed from the predominant strain, GII.3[P25]. RESULTS Norovirus was the most common virus detected in human fecal samples in this study. 39 of 65 outbreak samples (60%) and 3 of 28 (10%) non-outbreak samples were positive for norovirus genogroup II. One was positive for rotavirus, and one indicated co-infection with rotavirus and norovirus genogroups I and II. Nucleotide sequences of VP1 and RdRp gene were successfully obtained from 28 of 39 positive norovirus GII and used for dual-typing; 25/28 (89.3%) were GII.3, and 24/28 (85.7) were GII.P25, respectively. Norovirus GII.3[P25] was the predominant strain responsible for this outbreak. The full genome sequence of norovirus GII.3[P25] from our study is the first reported in Thailand and has 98.62% and 98.57% similarity to norovirus found in China in 2021 and the USA in 2022, respectively. We further demonstrate the presence of multiple co-circulating norovirus genotypes, including GII.21[P21], GII.17[P17], GII.3[P12] and GII.4[P31] in our study. CONCLUSIONS An unusual diarrhea outbreak was found in December 2021 in eastern Thailand. Norovirus strain GII.3[P25] was the cause of the outbreak and was first detected in Thailand. The positive rate during GII.3[P25] outbreak was six times higher than sporadic cases (GII.4), and, atypically, adults were the primary infected population rather than children.
Collapse
Affiliation(s)
| | - Krongkan Srimuang
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pawinee Doungngern
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi, 11000, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Khwankamon Rattanatumhi
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirorat Khiewbanyang
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi, 11000, Thailand
| | - Pantila Taweewigyakarn
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi, 11000, Thailand
| | - Somkid Kripattanapong
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi, 11000, Thailand
| | - Sasiprapa Ninwattana
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
- Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ananporn Supataragul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Spencer L Sterling
- Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Khajohn Joonlasak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Wudtichai Manasatienkij
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Thomas S Cotrone
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Yadav SA, Hasan S, Gnanaselvan S, Baskaran S, Danaraj J. Biological Activities and Nanoparticle Synthesis of Dioscorea bulbifera and its Mechanistic Action - An Extensive Review. Pharm Nanotechnol 2024; 12:379-390. [PMID: 38265372 DOI: 10.2174/0122117385284106240110065809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Dioscorea bulbifera is commonly known as air potato present in the tropical and subtropical regions. It is a perennial climber traditionally used for various therapeutic purposes by traditional healers. This review explores various medicinal uses of D. bulbifera and its active ingredients, as well as describes its nanoparticle synthesis for medical applications. METHODS The Google Scholar search engine was used to conduct this comprehensive review along with the databases of the following publishers: Elsevier, Springer, Taylor and Francis, Bentham, and PubMed. DISCUSSION D. bulbifera contains several bioactive compounds that are responsible for its pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, anticancer, and antidiabetic properties. It is also used as a nutritive functional food. D. bulbifera-mediated nanoparticle synthesis has been established by the scientific communities for various medicinal applications. CONCLUSION D. bulbifera contains numerous active ingredients, including diosbulbins, bafoudiosbulbin, β-sitosterol, diosgenin, dioscin, pennogenin, myricetin, quercetin, and stigmasterols with numerous biological activities. In addition, it has a vital role in synthesizing nanoparticles with good pharmacological applications, especially in drug delivery systems. However, its potential characteristic features and functional properties of the active molecules present in this tuber need to be further explored in clinical trials. We suggest that using this edible tuber, we may formulate the valueadded food with good medicinal applications.
Collapse
Affiliation(s)
- Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Shiek Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Santhoshraman Baskaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Jayapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| |
Collapse
|
3
|
Lindesmith LC, Brewer-Jensen PD, Conrad H, O’Reilly KM, Mallory ML, Kelly D, Williams R, Edmunds WJ, Allen DJ, Breuer J, Baric RS. Emergent variant modeling of the serological repertoire to norovirus in young children. Cell Rep Med 2023; 4:100954. [PMID: 36854303 PMCID: PMC10040388 DOI: 10.1016/j.xcrm.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Human norovirus is the leading cause of acute gastroenteritis. Young children and the elderly bear the greatest burden of disease, representing more than 200,000 deaths annually. Infection prevalence peaks at younger than 2 years and is driven by novel GII.4 variants that emerge and spread globally. Using a surrogate neutralization assay, we characterize the evolution of the serological neutralizing antibody (nAb) landscape in young children as they transition between sequential GII.4 pandemic variants. Following upsurge of the replacement variant, antigenic cartography illustrates remodeling of the nAb landscape to the new variant accompanied by improved nAb titer. However, nAb relative avidity remains focused on the preceding variant. These data support immune imprinting as a mechanism of immune evasion and GII.4 virus persistence across a population. Understanding the complexities of immunity to rapidly evolving and co-circulating viral variants, like those of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), and dengue viruses, will fundamentally inform vaccine design for emerging pathogens.
Collapse
Affiliation(s)
- Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul D. Brewer-Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen M. O’Reilly
- Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1EW 7HT, UK
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rachel Williams
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - W. John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases and Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1EW 7HT, UK
| | - David J. Allen
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Microbiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|