1
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
2
|
Sandhu S, Keyworth M, Karimi-Jashni S, Alomar D, Smith BJ, Kozbenko T, Doty S, Hocking R, Hamada N, Reynolds RJ, Scott RT, Costes SV, Beheshti A, Yauk C, Wilkins RC, Chauhan V. AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:85-111. [PMID: 39387375 DOI: 10.1002/em.22631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Bone loss, commonly seen in osteoporosis, is a condition that entails a progressive decline of bone mineral density and microarchitecture, often seen in post-menopausal women. Bone loss has also been widely reported in astronauts exposed to a plethora of stressors and in patients with osteoporosis following radiotherapy for cancer. Studies on mechanisms are well documented but the causal connectivity of events to bone loss development remains incompletely understood. Herein, the adverse outcome pathway (AOP) framework was used to organize data and develop a qualitative AOP beginning from deposition of energy (the molecular initiating event) to bone loss (the adverse outcome). This qualitative AOP was developed in collaboration with bone loss research experts to aggregate relevant findings, supporting ongoing efforts to understand and mitigate human system risks associated with radiation exposures. A literature review was conducted to compile and evaluate the state of knowledge based on the modified Bradford Hill criteria. Following review of 2029 studies, an empirically supported AOP was developed, showing the progression to bone loss through many factors affecting the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. The structural, functional, and quantitative basis of each proposed relationship was defined, for inference of causal changes between key events. Current knowledge and its gaps relating to dose-, time- and incidence-concordance across the key events were identified, as well as modulating factors that influence linkages. The new priorities for research informed by the AOP highlight areas for improvement to enable development of a quantitative AOP used to support risk assessment strategies for space travel or cancer radiotherapy.
Collapse
Affiliation(s)
- Snehpal Sandhu
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mitchell Keyworth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Syna Karimi-Jashni
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Stephen Doty
- Hospital for Special Surgery Research Institute, New York City, New York, USA
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Substantiable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | | | - Ryan T Scott
- KBR, NASA Ames Research Center, Moffett Field, California, USA
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Research Branch, Mountain View, California, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Humayun A, Lin LYT, Li HH, Fornace AJ. FAILLA MEMORIAL LECTURE How We Got Here: One Laboratory's Odyssey in the Field of Radiation-Inducible Genes. Radiat Res 2024; 201:617-627. [PMID: 38573158 DOI: 10.1667/rade-23-00205.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
This review focuses on early discoveries that contributed to our understanding and the scope of transcriptional responses after radiation damage. Before the development of modern approaches to assess overall global transcriptomic responses, the idea that mammalian cells could respond to DNA-damaging agents in a manner analogous to bacteria was not generally accepted. To investigate this possibility, the development of technology to identify differentially expressed low-abundance transcripts substantially facilitated our appreciation that DNA damaging agents like UV radiation and subsequently ionizing radiation did in fact produce robust transcriptional responses. Here we focus on our identification and characterization of radiation-inducible genes, and how even early studies on stress gene signaling highlighted the broad scope of transcriptional responses to radiation damage. Since then, the central role of transcriptional responses to radiation injury in maintaining genome integrity has been highlighted in many processes, including cell cycle checkpoint control, resistance to cancer by p53 and other key factors, cell senescence, and metabolism.
Collapse
Affiliation(s)
- Arslon Humayun
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | | | - Heng-Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Washington, DC
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
6
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Suman S, Fornace AJ. Countermeasure development against space radiation-induced gastrointestinal carcinogenesis: Current and future perspectives. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:53-59. [PMID: 36336370 DOI: 10.1016/j.lssr.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
A significantly higher probability of space radiation-induced gastrointestinal (GI) cancer incidence and mortality after a Mars mission has been projected using biophysical and statistical modeling approaches, and may exceed the current NASA mandated limit of less than 3% REID (risk of exposure-induced death). Since spacecraft shielding is not fully effective against heavy-ion space radiation, there is an unmet need to develop an effective medical countermeasure (MCM) strategy against heavy-ion space radiation-induced GI carcinogenesis to safeguard astronauts. In the past, we have successfully applied a GI cancer mouse model approach to understand space radiation-induced GI cancer risk and associated molecular signaling events. We have also tested several potential MCMs to safeguard astronauts during and after a prolonged space mission. In this review, we provide an updated summary of MCM testing using the GI cancer mouse model approach, lessons learned, and a perspective on the senescence signaling targeting approach for desirable protection against space radiation-induced GI carcinogenesis. Furthermore, we also discuss some of the advanced senotherapeutic candidates/combinations as a potential MCM for space radiation-induced GI carcinogenesis.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington D. C. 20057, USA.
| | - Albert J Fornace
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Research Building, Room E504, 3970 Reservoir Rd., NW, Washington D. C. 20057, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington D. C. 20057, USA
| |
Collapse
|
8
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
9
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|