1
|
Fogt JS, Roth M, Gardner HP. How Can We Better Inform Patients of the Importance of Contact Lens Compliance?: Current Perspectives. CLINICAL OPTOMETRY 2024; 16:267-286. [PMID: 39507399 PMCID: PMC11539749 DOI: 10.2147/opto.s405204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Compliance with contact lens care is important for successful contact lens wear and for minimizing the risk of complications related to lens wear. There are many components of overall lens care guidelines that may potentially be disregarded, forgotten, or misunderstood. Literature has reported copious data on rates of poor compliance for separate lens care recommendations. Knowing the areas of contact lens care where lens wearers perform poorly is helpful when creating strategies for improving patient education. As science evolves and new best-practices are determined, eye care providers must be engaged in educating new lens wearers and reeducating existing wearers. It is vital to make wearers mindful of proper lens care and why proper lens care should be important to them. Various educational strategies can help practitioners to communicate with their patients more effectively. The purpose of this narrative review is to discuss studies of noncompliance with contact lens wear; consequences of these noncompliant behaviors; and studies of lens care education which were found with a literature search. The resulting discussion also includes strategies to improve compliance with patient contact lens wear.
Collapse
Affiliation(s)
| | - Madison Roth
- Ohio State University College of Optometry, Columbus, OH, USA
| | | |
Collapse
|
2
|
Owusu KG, Asiamah R, Asare KK, Birikorang E, Kyei S. Care practices of contact lens solutions and microbial contamination among wearers in Ghana. Cont Lens Anterior Eye 2024; 47:102252. [PMID: 38890070 DOI: 10.1016/j.clae.2024.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/26/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE This study sought to assess contact lens solutions care practices, and their microbial contamination among contact lens wearers in Ghana and to profile their antibiotic susceptibility pattern. METHODS The study employed a biphasic approach which involved a cross-sectional design that investigated participants' habits related to care for the solutions with a two-part questionnaire and a microbiological analysis of samples of contact lens care solutions of the participants for microbial contamination. A snowball sampling method provided access to 32 different contact lens wearers in four care facilities in Ghana. In most cases, the participants had no pre-existing familial relationship with each other or with the care facilities. RESULTS Out of 32 samples of contact lens solutions, 30 were tested for microbial contamination. A total of 23 (76.67 %) samples of contact lens solution were found to be contaminated with Enterobacter sp. (34.80 %), Pseudomonas sp. (21.70 %), Bacilli sp. (21.70 %), Klebsiella sp. (17.20 %), and Escherichia coli (4.60 %). The duration of solution storage in the open bottle and nonadherence to manufacturer instructions for solution storage showed a statistically significant association with microbial contamination (p ≤ 0.05). CONCLUSION Contact lens care solutions have been found to harbour multiple antibiotic-resistant bacteria that are potentially pathogenic to the corneal surface. The contamination is associated with some unhealthy solution-care practices among wearers.
Collapse
Affiliation(s)
- Kwame Gyimah Owusu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Randy Asiamah
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwame Kumi Asare
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Birikorang
- Department of Laboratory Technology, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana; Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
3
|
Almutleb ES, Ramachandran S, Khan AA, El-Hiti GA, Alanazi SA. Synergistic Effect of Nilavembu Choornam-Gold Nanoparticles on Antibiotic-Resistant Bacterial Susceptibility and Contact Lens Contamination-Associated Infectious Pathogenicity. Int J Mol Sci 2024; 25:2115. [PMID: 38396792 PMCID: PMC10889799 DOI: 10.3390/ijms25042115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Antibiotic-resistant bacterial colonies mitigate rapid biofilm formation and have complex cell wall fabrications, making it challenging to penetrate drugs across their biofilm barriers. The objective of this study was to investigate the antibacterial susceptibility of antibiotic-resistant bacteria and contact lens barrenness. Nilavembu Choornam-Gold Nanoparticles (NC-GNPs) were synthesized using NC polyherbal extract and characterized by UV-visible spectrophotometer, SEM-EDX, XRD, Zeta sizer, FTIR, and TEM analysis. Contact lenses with overnight cultures of antibiotic-resistant bacteria K. pneumoniae and S. aureus showed significant differences in growth, biofilm formation, and infection pathogenicity. The NC-GNPs were observed in terms of size (average size is 57.6 nm) and surface chemistry. A zone of inhibition was calculated for K. pneumoniae 18.8 ± 1.06, S. aureus 23.6 ± 1.15, P. aeruginosa 24.16 ± 0.87, and E. faecalis 24.5 ± 1.54 mm at 24 h of NC-GNPs alone treatment. In electron microscopy studies, NC-GNP-treated groups showed nuclear shrinkage, nuclear disintegration, degeneration of cell walls, and inhibited chromosomal division. In contrast, normal bacterial colonies had a higher number of cell divisions and routinely migrated toward cell multiplications. NC-GNPs exhibited antibacterial efficacy against antibiotic-resistant bacteria when compared to NC extract alone. We suggest that NC-GNPs are highly valuable to the population of hospitalized patients and other people to reduce the primary complications of contact lens contamination-oriented microbial infection and the therapeutic efficiency of antibiotic-resistant bacterial pathogenicity.
Collapse
Affiliation(s)
| | - Samivel Ramachandran
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (E.S.A.); (A.A.K.); (G.A.E.-H.); (S.A.A.)
| | | | | | | |
Collapse
|
4
|
Barrera B, Bustamante A, Marín-Cornuy M, Aguila-Torres P. Contact lenses and ocular dysbiosis, from the transitory to the pathological. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:586-594. [PMID: 37648207 DOI: 10.1016/j.oftale.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Normal ocular microbiota is composed of different Gram-negative and positive bacterial communities that act as commensals on the ocular surface. An imbalance in the homeostasis of the native species or dysbiosis triggers functional alterations that can eventually lead to ocular conditions, indicating the use of contact lenses as the most relevant predisposing factor. Through a bibliographic review that added scientific articles published between 2018 and 2022, the relationship between healthy ocular microbiota and dysbiosis associated with the use of contact lenses that trigger ocular conditions was analyzed. The ocular microbiota in healthy individuals is mainly composed of bacteria from the phyla: Proteobacteria, Actinobacteria and Firmicutes. These bacterial communities associated with the use of contact lenses develop dysbiosis, observing an increase in certain genera such as Staphylococcus spp. and Pseudomonas spp., which under normal conditions are commensals of the ocular surface, but as their abundance is increased, they condition the appearance of various ocular conditions such as corneal infiltrative events, bacterial keratitis and corneal ulcer. These pathologies tend to evolve rapidly, which, added to late detection and treatment, can lead to a poor visual prognosis. It is suggested that professionals in the ophthalmology area learn about the composition of the communities of microorganisms that make up this ocular microbiota, in order to correctly distinguish and identify the causative agent, thereby providing a adequate and effective treatment to the user.
Collapse
Affiliation(s)
- B Barrera
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - A Bustamante
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - M Marín-Cornuy
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile
| | - P Aguila-Torres
- Laboratorio de Microbiología Molecular, Escuela de Tecnología Médica, Universidad Austral de Chile, Puerto Montt, Chile.
| |
Collapse
|
5
|
Nie L, Li Y, Liu Y, Shi L, Chen H. Recent Applications of Contact Lenses for Bacterial Corneal Keratitis Therapeutics: A Review. Pharmaceutics 2022; 14:2635. [PMID: 36559128 PMCID: PMC9786638 DOI: 10.3390/pharmaceutics14122635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Corneal keratitis is a common but severe infectious disease; without immediate and efficient treatment, it can lead to vision loss within a few days. With the development of antibiotic resistance, novel approaches have been developed to combat corneal keratitis. Contact lenses were initially developed to correct vision. Although silicon hydrogel-based contact lenses protect the cornea from hypoxic stress from overnight wear, wearing contact lenses was reported as an essential cause of corneal keratitis. With the development of technology, contact lenses are integrated with advanced functions, and functionalized contact lenses are used for killing bacteria and preventing infectious corneal keratitis. In this review, we aim to examine the current applications of contact lenses for anti-corneal keratitis.
Collapse
Affiliation(s)
- Linyan Nie
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanfeng Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Linqi Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Huiyun Chen
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
| |
Collapse
|
6
|
Borroni D, Paytuví-Gallart A, Sanseverino W, Gómez-Huertas C, Bonci P, Romano V, Giannaccare G, Rechichi M, Meduri A, Oliverio GW, Rocha-de-Lossada C. Exploring the Healthy Eye Microbiota Niche in a Multicenter Study. Int J Mol Sci 2022; 23:ijms231810229. [PMID: 36142138 PMCID: PMC9499403 DOI: 10.3390/ijms231810229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose: This study aims to explore and characterize healthy eye microbiota. Methods: Healthy subjects older than 18 years were selected for this descriptive cross-sectional study. Samples were collected with an eSwab with 1 mL of Liquid Amies Medium (Copan Brescia, Italy). Following DNA extraction, libraries preparation, and amplification, PCR products were purified and end-repaired for barcode ligation. Libraries were pooled to a final concentration of 26 pM. Template preparation was performed with Ion Chef according to Ion 510, Ion 520, and Ion 530 Kit-Chef protocol. Sequencing of the amplicon libraries was carried out on a 520 or 530 chip using the Ion Torrent S5 system (Thermo Fisher; Waltham, MA, USA). Raw reads were analyzed with GAIA (v 2.02). Results: Healthy eye microbiota is a low-diversity microbiome. The vast majority of the 137 analyzed samples were highly enriched with Staphylococcus, whereas only in a few of them, other genera such as Bacillus, Pseudomonas, and Corynebacterium predominate. We found an average of 88 genera with an average Shannon index of 0.65. Conclusion: We identified nine different ECSTs. A better understanding of healthy eye microbiota has the potential to improve disease diagnosis and personalized regimens to promote health.
Collapse
Affiliation(s)
- Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Correspondence:
| | | | - Walter Sanseverino
- Sequentia Biotech SL, Carrer del Dr. Trueta, 179, 08005 Barcelona, Spain
| | - Carmen Gómez-Huertas
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Paola Bonci
- Ospedale Civile di Ravenna, Banca Delle Cornee Della Regione Emilia-Romagna, 48121 Ravenna, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, 9297 University of Brescia, ASST Spedali Civili, 25100 Brescia, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Miguel Rechichi
- Centro Polispecialistico Mediterraneo, 88050 Sellia Marina, Italy
| | - Alessandro Meduri
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Giovanni William Oliverio
- Biomedical Science Department, Institute of Ophthalmology, University of Messina, Via Consolare Valeria, 98146 Messina, Italy
| | - Carlos Rocha-de-Lossada
- Eyemetagenomics Ltd., 71–75, Shelton Street, Covent Garden, London WC2H 9JQ, UK
- Department of Ophthalmology, Qvision (Vithas Almeria), 04120 Almería, Spain
- Hospital Regional Universitario de Malaga, 29010 Malaga, Spain
- Departamento de Cirugía, Área de Oftalmología, Universidad de Sevilla, 41004 Sevilla, Spain
| | | |
Collapse
|