1
|
Bijani S, Kashfi FS, Zahedi-Vanjani S, Nedaei K, Sharafi A, Kalantari-Hesari A, Hosseini MJ. The role of gender differences in the outcome of juvenile social isolation: Emphasis on changes in behavioral, biochemical and expression of nitric oxide synthase genes alteration. Heliyon 2024; 10:e28964. [PMID: 38617928 PMCID: PMC11015403 DOI: 10.1016/j.heliyon.2024.e28964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Social isolation can cause serious problem in performance of individuals in community. As gender differences may cause variation results in the severity of depressive behavior and response of patients to therapy, the impact of gender and the interaction of the level of endocrine secretion in depression were investigated in this study. Wistar rats of both sexes were subjected to post-weaning social isolation (PWSI) conditions and, together with the control group, experienced several behavioral tests including open-field Test (OFT), elevated plus maze (EPM), force swimming test (FST), splash test and novel object recognition test (NOR). Hippocampal tissue was isolated to measure biochemical factors such as nitric oxide level, FRAP amount, MDA level. In addition, real-time-PCR test was used to quantify the genes expression level of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). On the other hand, sexual hormone levels in blood were measured. Both cognitive and behavioral f unctions were declined as the result of PWSI induction in male and diestrus female rats. The consequent surge of estradiol during estrous phase seems to suppress the accumulation of reactive oxygen species (ROS), and modulate iNOS and nNOS expression. In conclusion, while the pattern of PWSI in surge cellular antioxidants, raising cellular ROS level is gender-specific, this alleviation was in relation with the drop of estradiol and unrelated with testosterone level.
Collapse
Affiliation(s)
- Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Fatemeh Sadat Kashfi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Sadaf Zahedi-Vanjani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran
- Department of Pathobiology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
2
|
Kukavica B, Škondrić S, Trifković T, Mišić D, Gašić U, Topalić-Trivunović L, Savić A, Velemir A, Davidović-Plavšić B, Šešić M, Lukić N. Comparative polyphenolic profiling of five ethnomedicinal plants and their applicative potential in the treatment of type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117377. [PMID: 37939910 DOI: 10.1016/j.jep.2023.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plants Salvia officinalis, Trifolium pratense, Agrimonia eupatoria, Cichorium intybus and Vinca minor are traditionally used for the prevention and treatment of numerous diseases, including diabetes. AIM OF THE STUDY Type 2 diabetes (T2D) is one of the most common diseases nowadays, often accompanied by oxidative stress and microbial infections. The aim of our work was to examine the antidiabetic, antioxidant, and antimicrobial properties of ethanol extracts of five medicinal plants for the purpose of their possible use in the treatment of T2D. MATERIALS AND METHODS The polyphenolic profile of the plant extracts was analyzed by Ultra-High Performance Liquid Chromatography with a diode array detector configured with a triple quadrupole mass spectrometer (UHPLC/DAD/(-)HESI-MS2). In vitro antidiabetic activity of extracts was determined by measuring the percentage of α-amylase and α-glucosidase inhibition. The antioxidant activity of the extract was determined by different spectrophotometric methods, while the antimicrobial activity was determined by agar dilution and disc diffusion methods. RESULTS A. eupatoria extract contains the highest percentage of flavonoids (94%, with isoquercetin, vitexin, and rutin as the most abundant) in relation to the concentration of total phenolic compounds and exhibits excellent antidiabetic, antioxidant, and antimicrobial activity. S. officinalis extract contains 60% flavonoids (predominately cirsimaritin and epigallocatechin gallate) and 40% phenolic acids (with rosmarinic acid being the most abundant from this group) and exhibits weak antidiabetic activity, significant antioxidant activity, and excellent antibacterial activity. A 45% percentage of flavonoids (with isoquercetin as the most abundant one) and 55% of phenolic acids (with ferulic acid as the most abundant) were measured in the extract of T. pratense, which had excellent antidiabetic activity but weaker antioxidant and antimicrobial activity. A similar percentage of flavonoids (52%, with epigallocatechin gallate in the highest concentration) and phenolic acids (48%, with chlorogenic acid as the most abundant) was measured in the extract of C. intybus which showed moderate antidiabetic, antioxidant, and antimicrobial properties. The extract of V. minor was the richest in phenolic acids (80%, with the most abundant chlorogenic acid), which resulted in weaker antidiabetic and antioxidant activities (except for Fe2+ chelating ability) and antimicrobial activity. CONCLUSION The results indicate that specific phenolic compounds are responsible for the different biological activities of the plant extracts. Among the investigated plants, the extract of A. eupatoria has the greatest potential for applications in the treatment of T2D.
Collapse
Affiliation(s)
- Biljana Kukavica
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Siniša Škondrić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Tanja Trifković
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Danijela Mišić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research "Siniša Stanković" Natonal Institute of Republic of Serbia, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ljiljana Topalić-Trivunović
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Aleksandar Savić
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Ana Velemir
- University of Banja Luka, Faculty of Technology, Vojvode Stepe Stepanovića 75, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Biljana Davidović-Plavšić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Milica Šešić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000, Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| | - Nataša Lukić
- University of Hohenheim, Faculty of Agriculture, Institute of Landscape and Plant Ecology, Ottilie-Zeller-Weg 2, 70599, Stuttgart, Germany; University of Banja Luka, Faculty of Forestry, Bulevar vojvode Stepe Stepanovića 75a, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina.
| |
Collapse
|
3
|
Samir SM, Hassan HM, Elmowafy R, ElNashar EM, Alghamdi MA, AlSheikh MH, Al-Zahrani NS, Alasiri FM, Elhadidy MG. Neuroprotective effect of ranolazine improves behavioral discrepancies in a rat model of scopolamine-induced dementia. Front Neurosci 2024; 17:1267675. [PMID: 38323121 PMCID: PMC10845649 DOI: 10.3389/fnins.2023.1267675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
Background Ranolazine (Rn), an antianginal agent, acts in the central nervous system and has been used as a potential treatment agent for pain and epileptic disorders. Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and the leading factor in dementia in the elderly. Aim We examined the impact of Rn on scopolamine (Sco)-induced dementia in rats. Methods Thirty-two albino male rats were divided into four groups: control, Rn, Sco, and Rn + Sco. Results A significant decrease in the escape latency in the Morris water maze test after pre-treatment with Rn explained better learning and memory in rats. Additionally, Rn significantly upregulated the activities of the antioxidant enzymes in the treated group compared to the Sco group but substantially reduced acetylcholinesterase activity levels in the hippocampus. Moreover, Rn dramatically reduced interleukin-1 β (IL-1β) and IL-6 and upregulated the gene expression of brain-derived neurotrophic factor (BDNF). Furthermore, in the Sco group, the hippocampal tissue's immunohistochemical reaction of Tau and glial factor activating protein (GFAP) was significantly increased in addition to the upregulation of the Caspase-3 gene expression, which was markedly improved by pre-treatment with Rn. The majority of pyramidal neurons had large vesicular nuclei with prominent nucleoli and appeared to be more or less normal, reflecting the all-beneficial effects of Rn when the hippocampal tissue was examined under a microscope. Conclusion Our findings indicated that Rn, through its antioxidative, anti-inflammatory, and anti-apoptotic effects, as well as the control of the expression of GFAP, BDNF, and Tau proteins, has a novel neuroprotective impact against scopolamine-induced dementia in rats.
Collapse
Affiliation(s)
- Shereen M. Samir
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamed ElNashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mona Hmoud AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Faten Mohammed Alasiri
- Pharmacist in King Fahad Armed Forces Hospital Khamis Mushait, Khamis Mushait, Saudi Arabia
| | - Mona G. Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
4
|
Enhancing the Neuroprotection Potential of Edaravone in Transient Global Ischemia Treatment with Glutathione- (GSH-) Conjugated Poly(methacrylic acid) Nanogel as a Promising Carrier for Targeted Brain Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7643280. [PMID: 36865347 PMCID: PMC9974254 DOI: 10.1155/2023/7643280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Ischemic stroke is the most common among various stroke types and the second leading cause of death, worldwide. Edaravone (EDV) is one of the cardinal antioxidants that is capable of scavenging reactive oxygen species, especially hydroxyl molecules, and has been already used for ischemic stroke treatment. However, poor water solubility, low stability, and bioavailability in aqueous media are major EDV drawbacks. Thus, to overcome the aforementioned drawbacks, nanogel was exploited as a drug carrier of EDV. Furthermore, decorating the nanogel surface with glutathione as targeting ligands would potentiate the therapeutic efficacy. Nanovehicle characterization was assessed with various analytical techniques. Size (199 nm, hydrodynamic diameter) and zeta potential (-25 mV) of optimum formulation were assessed. The outcome demonstrated a diameter of around 100 nm, sphere shape, and homogenous morphology. Encapsulation efficiency and drug loading were determined to be 99.9% and 37.5%, respectively. In vitro drug release profile depicted a sustained release process. EDV and glutathione presence in one vehicle simultaneously made the possibility of antioxidant effects on the brain in specific doses, which resulted in elevated spatial memory and learning along with cognitive function in Wistar rats. In addition, significantly lower MDA and PCO and higher levels of neural GSH and antioxidant levels were observed, while histopathological improvement was approved. The developed nanogel can be a suited vehicle for drug delivery of EDV to the brain and improve ischemia-induced oxidative stress cell damage.
Collapse
|