1
|
Vékony V, Márián IG, Szabó IA. Effect of magnetic anisotropy and interaction on spatial focused hyperthermia for rotating and oscillating fields. Heliyon 2024; 10:e38290. [PMID: 39391519 PMCID: PMC11466593 DOI: 10.1016/j.heliyon.2024.e38290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The behavior of magnetic nanoparticles in a time-varying magnetic field has several practical applications. One of these is hyperthermia used in the treatment of cancer. The nanoparticles injected in the tumor cells release the energy absorbed from the time dependent external magnetic field in the form of heat to its environment in a well-localized way. The aim of the research in this area is to maximize the amount of the dissipated energy. Using a combination of an oscillating and static magnetic field, this dissipated energy can be more focused in space. In this article, we investigated whether this spatial focusing is also present using a rotating and static field together. Furthermore, we investigated the effects of anisotropy and interaction between nanoparticles on this spatial focusing effect using the jump-diffusion model for Néel relaxation in both cases. This kinetic Monte Carlo (MC) method was validated and compared with the stochastic Landau-Lifshitz-Gilbert (SLLG) equation based model. We have shown that the spatial focusing effect is also present for these non-idealized experimentally realizable cases. Also, the effect of rotating magnetic field on magnetic nanoparticles was not investigated in kinetic Monte Carlo simulations before.
Collapse
Affiliation(s)
- Vilmos Vékony
- University of Debrecen, Doctoral School of Physics, 4032, Debrecen, Egyetem Tér 1, Hungary
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, H-4039, Debrecen, Bem tér 18/b, Hungary
- HUN-REN Institute for Nuclear Research, Bem tér 18/c, Debrecen, P.O. Box 51, H-4001, Hungary
| | - István G. Márián
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, H-4039, Debrecen, Bem tér 18/b, Hungary
- HUN-REN Institute for Nuclear Research, Bem tér 18/c, Debrecen, P.O. Box 51, H-4001, Hungary
| | - István A. Szabó
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, H-4039, Debrecen, Bem tér 18/b, Hungary
| |
Collapse
|
2
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Ahadi N, Mobinikhaledi A, Ebrahimi AH. Zn complexed on hybrid manganese doped cobalt ferrite nanoparticles covered by silica as a catalyst in the synthesis of 2-amino-4 H-pyran and N- arylquinoline derivatives. Heliyon 2024; 10:e30620. [PMID: 38765097 PMCID: PMC11098855 DOI: 10.1016/j.heliyon.2024.e30620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
In the present work, Zn complexed on hybrid manganese doped cobalt ferrite nanoparticles covered by silica were synthesized. These MNPs were characterized using different techniques including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Field emission-scanning electron micro-scope (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS), Vibration sample magnetometer (VSM), Inductively coupled plasma atomic emission spectroscopy (ICP), Zeta potential and Thermogravimetric analysis (TGA). FE-SEM Images showed uniform spherical shape with rough surfaces and an aggregation in structure of MNPs. A decrease in Ms is visible in VSM analysis due to the increase in particle diameter as a result of loading the organic coating on the surface of the magnetic nanoparticles. According to TGA analysis, the synthesized MNPs have good stability up to 125 °C. The ICP analysis indicates the presence of 0.13 mmol/g zinc on the surface of loaded MNPs. The effect of these prepared MNPs as a catalyst was studied in the synthesis of 2-amino-4H-pyran and N- arylquinoline derivatives. This method provides excellent yield of products with short reaction time, simple purification and easy separation of the catalyst. Furthermore, the reusability of the catalyst during five periods was not associated with a significant decrease in its activity.
Collapse
Affiliation(s)
- Najmieh Ahadi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran
| | - Akbar Mobinikhaledi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Amir Hossain Ebrahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran
| |
Collapse
|
4
|
Elbeltagi S, Saeedi AM, Eldin ZE, Alfassam HE, Alharbi HM, Madkhali N, Shakor ABA, El-Aal MA. Biosynthesis, characterization, magnetic hyperthermia, and in vitro toxicity evaluation of quercetin-loaded magnetoliposome lipid bilayer hybrid system on MCF-7 breast cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130543. [PMID: 38103758 DOI: 10.1016/j.bbagen.2023.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Novel biocompatible and effective hyperthermia (HT) treatment materials for breast cancer therapeutic have recently attracting researchers, because of their effective ablation of cancer cells and negligible damage to healthy cells. Magnetoliposome (MLs) have numerous possibilities for utilize in cancer treatment, including smart drug delivery (SDD) mediated through alternating magnetic fields (AMF). In this work, magnesium ferrite (MgFe2O4) encapsulated with liposomes lipid bilayer (MLs), Quercetin (Q)-loaded MgFe2O4@Liposomes (Q-MLs) nano-hybrid system were successfully synthesized for magnetic hyperthermia (MHT) and SDD applications. The hybrid system was well-investigated by different techniques using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), Energy dispersive X-ray (EDX), Vibrating sample magnetometer (VSM), Transmission electron microscope (TEM), and Zeta Potential (ZP). The characterization results confirmed the improving quercetin-loading on the MLs surface. TEM analysis indicated the synthesized MgFe2O4, MLs, and Q-MLs were spherical with an average size of 23.7, 35.5, and 329.5 nm, respectively. The VSM results revealed that the MgFe2O4 exhibit excellent and effective saturation magnetization (MS) (40.5 emu/g). Quercetin drug loading and entrapment efficiency were found to be equal to 2.1 ± 0.1% and 42.3 ± 2.2%, respectively. The in-vitro Q release from Q-loaded MLs was found 40.2% at pH 5.1 and 69.87% at pH 7.4, verifying the Q-loading pH sensitivity. The MLs and Q-MLs hybrid system as MHT agents exhibit specific absorption rate (SAR) values of 197 and 205 W/g, correspondingly. Furthermore, the Q-MLs cytotoxicity was studied on the MCF-7 breast cancer cell line, and the obtained data demonstrated that the Q-MLs have a high cytotoxicity effect compared to MLs and free Q.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, New Valley 72511, Egypt.
| | - Ahmad M Saeedi
- Department of Physics, Faculty of Applied Science, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578 Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and nanotechnology epartment, (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawal Madkhali
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia
| | | | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
5
|
Eldeeb BA, El-Raheem WMA, Elbeltagi S. Green synthesis of biocompatible Fe 3O 4 magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic-hyperthermia applications. Sci Rep 2023; 13:19000. [PMID: 37923900 PMCID: PMC10624884 DOI: 10.1038/s41598-023-46287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Green synthesis of nanoparticles (NPs) is eco-friendly, biocompatible, cost-effective, and highly stable. In the present study, Citrus sinensis peel extract was utilized to the fabrication of superparamagnetic iron oxide nanoparticles (SPIONs). The fabricated SPIONs were first characterized using UV-Visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The UV-Vis spectra analysis displayed a peak at 259 nm due to the surface plasmon resonance. The FTIR spectrum showed bands at 3306 cm-1, and 1616 cm-1 revealed the protein's involvement in the development and capping of NPs. TEM analysis indicated that green synthesized SPIONs were spherical in shape with particle size of 20-24 nm. Magnetization measurements indicate that the synthesized SPIONs exhibited superparamagnetic behavior at room temperature. The antimicrobial activity, minimum inhibitory concentration (MIC), antioxidant potential, anti-inflammatory effect, and catalytic degradation of methylene blue by SPIONs were investigated in this study. Results demonstrated that SPIONs had variable antimicrobial effect against different pathogenic multi-drug resistant bacteria. At the highest concentration (400 μg/mL), SPIONs showed inhibition zones (14.7-37.3 mm) against all the target isolates. Furthermore, the MIC of synthesized SPIONs against Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, and Candida albicans were 3, 6.5, 6.5, 12.5, 50, 25 μg/mL, respectively. SPIONs exhibited strong antioxidant, anti-inflammatory, and catalytic dye degradation activities. Interestingly, Fe3O4 SPIONs shows optimum magnetic hyperthermia (MHT) techniques under an alternating magnetic field (AMF) measured in specific absorption rate (SAR) of 164, 230, and 286 W/g at concentrations 1, 5, and 10 mg/mL, respectively. Additionally, these newly fabricated SPIONs virtually achieve significant execution under the AMF in fluid MHT and are suitable for biomedical applications.
Collapse
Affiliation(s)
- Bahig A Eldeeb
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Walaa M Abd El-Raheem
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, El-Kharga, 72511, New Valley, Egypt.
| |
Collapse
|
6
|
Li S, Sharaf MG, Rowe EM, Serrano K, Devine DV, Unsworth LD. Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy)ethyl Phosphorylcholine Coated Magnetic Nanoparticles. Biomolecules 2023; 13:1165. [PMID: 37627230 PMCID: PMC10452919 DOI: 10.3390/biom13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| |
Collapse
|
7
|
Eldeeb BA, El-raheem WMA, Elbeltagi S. Green synthesis of biocompatible Fe 3 O 4 magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic- hyperthermia applications.. [DOI: 10.21203/rs.3.rs-3010022/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Plants include active chemicals known as phytochemicals and biomolecules that serve as decreasing and biostability factors for nanoparticle (NP) creation. Citrus Sinensis peels are rich in phenolics, flavonoids, antioxidants, and biophysical benefits. Herein, we prepared superparamagnetic iron oxide nanoparticles (SPIONs) by co-precipitation using Citrus Sinensis peel extract as a novel green synthesis method. The antioxidant, anti-inflammatory, dye degradation activities, and antimicrobial activities of Fe3O4 MNPs were investigated. Furthermore, the produced materials were characterized using FTIR, UV, TEM, VSM, and XRD analysis. The Fe3O4 MNPs showed higher antibacterial activities against multi antibiotic resistant bacterial strains: Escherichia coli, Streptococcus mutans, Candida albicans, Staphylococcus aureus, Bacillus subtilis, and Klebsiella pneumonia. The sample has generated a lot of attention in the scientific community for magnetic hyperthermia (MHT) applications. The maximum value of the specific absorption rate (SAR) was evaluated at sample concentrations of 10mg under the magnetic field condition. Additionally, these newly fabricated SPIONs virtually achieve significant execution under the alternating magnetic field (AMF) in fluid HT and are suitable for biomedical applications.
Collapse
|
8
|
Jjagwe J, Olupot PW, Carrara S. Iron oxide nanoparticles/nanocomposites derived from steel and iron wastes for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118236. [PMID: 37235992 DOI: 10.1016/j.jenvman.2023.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Iron oxide nanoparticles (IONPs) are characterized by superior magnetic properties, high surface area to volume ratio, and active surface functional groups. These properties aid in removal of pollutants from water, through adsorption and/or photocatalysis, justifying the choice of IONPs in water treatment systems. IONPs are usually developed from commercial chemicals of ferric and ferrous salts alongside other reagents, a procedure that is costly, environmentally unfriendly and limits their mass production. On the other hand, steel and iron industries produce both solid and liquid wastes which in most cases are piled, discharged into water streams or landfilled as strategies to dispose them off. Such practices are detrimental to environmental ecosystems. Given the high content of iron present in these wastes, they can be used to generate IONPs. This work reviewed published literature through selected key words on the deployment of steel and/or iron-based wastes as IONPs precursors for water treatment. The findings reveal that steel waste-derived IONPs have properties such as specific surface area, particle sizes, saturation magnetization, and surface functional groups that are comparable or sometimes better than those synthesized from commercial salts. Furthermore, the steel waste-derived IONPs have high removal efficacy for heavy metals and dyes from water with possibilities of being regenerated. The performance of steel waste-derived IONPs can be enhanced by functionalization with different reagents such as chitosan, graphene, and biomass based activated carbons. Nonetheless, there is need to explore the potential of steel waste-based IONPs in removing contaminants of emerging concern, modifying pollutant detection sensors, their techno-economic feasibility in large treatment plants, toxicity of these nanoparticles when ingested into the human body, among other areas.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Integrated Circuits Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
9
|
Dahiya M, Awasthi R, Yadav JP, Sharma S, Dua K, Dureja H. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization. Int J Biol Macromol 2023; 242:124919. [PMID: 37196717 DOI: 10.1016/j.ijbiomac.2023.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Biocompatible magnetic nanoparticles are used for various biomedical applications. This study reported the development of nanoparticles with magnetic properties by embedding magnetite particles in the drug-loaded, crosslinked matrix of chitosan. Sorafenib tosylate-loaded magnetic nanoparticles were prepared by a modified ionic-gelation method. Particle size, zeta potential, polydispersity index, and entrapment efficiency of nanoparticles were in the range of 95.6 ± 3.4 nm to 440.9 ± 7.3 nm, 12.8 ± 0.8 mV to 27.3 ± 1.1 mV, 0.289 ± 0.011 to 0.571 ± 0.011, and 54.36 ± 1.26 % to 79.67 ± 1.40 %, respectively. The XRD spectrum of formulation CMP-5 confirmed the amorphous nature of the loaded drug in nanoparticles. TEM image confirmed the spherical shape of nanoparticles. Atomic force microscopic image of formulation CMP-5 indicated a mean surface roughness of 10.3597 nm. The magnetization saturation of formulation CMP-5 was 24.74 emu/g. Electron paramagnetic resonance spectroscopy revealed that formulation CMP-5's g-Lande's factor was 4.27, which was extremely near to the 4.30 (usual for Fe3+ ions). Residual paramagnetic Fe3+ ions may be responsible for paramagnetic origin. The data suggests superparamagnetic nature of particles. Formulations released 28.66 ± 1.22 % to 53.24 ± 1.95 % and 70.13 ± 1.72 % to 92.48 ± 1.32 % of the loaded drug after 24 h in pH 6.8 and pH 1.2, respectively. The IC50 value of formulation CMP-5 was 54.75 μg/mL in HepG2 (human hepatocellular carcinoma cell lines).
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India
| | - Jaya Parkash Yadav
- Indira Gandhi University, Meerpur, Rewari 123401, Haryana, India; Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Shammi Sharma
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
10
|
New Insights into the Biological Response Triggered by Dextran-Coated Maghemite Nanoparticles in Pancreatic Cancer Cells and Their Potential for Theranostic Applications. Int J Mol Sci 2023; 24:ijms24043307. [PMID: 36834718 PMCID: PMC9965009 DOI: 10.3390/ijms24043307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated ɣ-Fe2O3 NPs (14, 28, 42, 56 μg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 μg/mL (low-dose), while exposure to a concentration of 56 μg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.
Collapse
|
11
|
Shah RK, AlReshaidan S. Facile synthesis and characterization of copper oxalate/cobalt oxalate/manganese oxalate and copper oxide/cobalt manganese oxide/manganese oxide as new nanocomposites for efficient photocatalytic degradation of malachite green dye. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Sorafenib tosylate loaded superparamagnetic nanoparticles: Development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|