1
|
Liu X, Wang J. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: An overview. CHEMOSPHERE 2024; 351:141255. [PMID: 38244870 DOI: 10.1016/j.chemosphere.2024.141255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The treatment of dye-containing wastewater generated from textile industries is still a challenge, and various technologies, including physical, chemical and biological ones have been used. In recent years, the ionizing radiation (usually including gamma ray generated by radionuclide, such as 60Co and 137Cs, and electron beam generated by electron accelerator) technology has received increasing attention for degrading refractory or toxic organic pollutants in wastewater because of its unique advantages, such as no chemical additives, fast reaction rate, strong degradation capacity, high efficiency, flexibility, controllability. Compared to the conventional wastewater treatment processes, ionizing radiation technology, as a disruptive wastewater treatment technology, is more efficient for the decolorization and degradation of dyes and the treatment of dye-containing wastewater. In this paper, the recent advances in the treatment of dye-containing wastewater by ionizing radiation, in particular by electron beam (EB) radiation were summarized and analyzed, focusing on the decolorization and degradation of various dyes. Firstly, the formation of various reactive species induced by radiation and their interactions with dye molecules, as well as the influencing factors on the removal efficiency of dyes were discussed. Secondly, the researches on the treating dye-containing wastewater by electron beam radiation technology were systematically reviewed. Then, the decolorization and degradation mechanisms by electron beam radiation were further discussed in detail. And the integrated processes that would contribute to the advancement of this technology in practical applications were examined. More importantly, the recent advances of electron beam radiation technology from laboratory to application were reviewed, especially successful operation of dye-containing wastewater treatment facilities in China. And eventually, current challenges, future research directions, and outlooks of electron beam radiation technology were proposed for further advancing this technology for the sustainable development of water resources.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
2
|
Egerić M, Matović L, Savić M, Stanković S, Wu YN, Li F, Vujasin R. Gamma irradiation induced degradation of organic pollutants: Recent advances and future perspective. CHEMOSPHERE 2024; 352:141437. [PMID: 38364919 DOI: 10.1016/j.chemosphere.2024.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Different organic compounds in aquatic bodies have been recognized as an emerging issue in Environmental Chemistry. The gamma irradiation technique, as one of the advanced oxidation techniques, has been widely investigated in past decades as a technique for the degradation of organic molecules, such as dyes, pesticides, and pharmaceuticals, which show high persistence to degradation. This review gives an overview of what has been achieved so far using gamma irradiation for different organic compound degradations giving an explanation of the mechanisms of degradations as well as the corresponding limitations and drawbacks, and the answer to why this technique has not yet widely come to life. Also, a new approach, recently presented in the literature, regards coupling gamma irradiation with other techniques and materials, as the latest trend. A critical evaluation of the most recent advances achieved by coupling gamma irradiation with other methods and/or materials, as well as describing the reaction mechanisms of coupling, that is, additional destabilization of molecules achieved by coupling, emphasizing the advantages of the newly proposed approach. Finally, it was concluded what are the perspectives and future directions towards its commercialization since this technique can contribute to waste minimization i.e. not waste transfer to other media. Summarizing and generalization the model of radiolytic degradation with and without coupling with other techniques can further guide designing a new modular, mobile method that will satisfy all the needs for its wide commercial application.
Collapse
Affiliation(s)
- Marija Egerić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Ljiljana Matović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Marjetka Savić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srboljub Stanković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Radojka Vujasin
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|