1
|
Kwon Y, Munsoor J, Kaufmann M, Zheng M, Smirnov AI, Han Z. Polydopamine Nanoparticles as Mimicking RPE Melanin for the Protection of Retinal Cells Against Blue Light-Induced Phototoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400230. [PMID: 38816934 PMCID: PMC11304300 DOI: 10.1002/advs.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Exposure of the eyes to blue light can induce the overproduction of reactive oxygen species (ROS) in the retina and retinal pigment epithelium (RPE) cells, potentially leading to pathological damage of age-related macular degeneration (AMD). While the melanin in RPE cells absorbs blue light and prevents ROS accumulation, the loss and dysfunction of RPE melanin due to age-related changes may contribute to photooxidation toxicity. Herein, a novel approach utilizing a polydopamine-replenishing strategy via a single-dose intravitreal (IVT) injection is presented to protect retinal cells against blue light-induced phototoxicity. To investigate the effects of overexposure to blue light on retinal cells, a blue light exposure Nrf2-deficient mouse model is created, which is susceptible to light-induced retinal lesions. After blue light irradiation, retina degeneration and an overproduction of ROS are observed. The polydopamine-replenishing strategy demonstrated effectiveness in maintaining retinal structural integrity and preventing retina degeneration by reducing ROS production in retinal cells and limiting the phototoxicity of blue light exposure. These findings highlight the potential of polydopamine as a simple and effective replenishment for providing photoprotection against high-energy blue light exposure.
Collapse
Affiliation(s)
- Yong‐Su Kwon
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Julie Munsoor
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Mary Kaufmann
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Min Zheng
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Alex I. Smirnov
- Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
| | - Zongchao Han
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Division of Pharmacoengineering & Molecular PharmaceuticsEshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
2
|
Gallego-Rentero M, López Sánchez A, Nicolás-Morala J, Alcaraz-Laso P, Zhang N, Juarranz Á, González S, Carrasco E. The effect of Fernblock® in preventing blue-light-induced oxidative stress and cellular damage in retinal pigment epithelial cells is associated with NRF2 induction. Photochem Photobiol Sci 2024; 23:1471-1484. [PMID: 38909335 DOI: 10.1007/s43630-024-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Blue light exposure of the ocular apparatus is currently rising. This has motivated a growing concern about potential deleterious effects on different eye structures. To address this, ARPE-19 cells were used as a model of the retinal pigment epithelium and subjected to cumulative expositions of blue light. The most relevant cellular events previously associated with blue-light-induced damage were assessed, including alterations in cell morphology, viability, cell proliferation, oxidative stress, inflammation, and the induction of DNA repair cellular mechanisms. Consistent with previous reports, our results provide evidence of cellular alterations resulting from repeated exposure to blue light irradiation. In this context, we explored the potential protective properties of the vegetal extract from Polypodium leucotomos, Fernblock® (FB), using the widely known treatment with lutein as a reference for comparison. The only changes observed as a result of the sole treatment with either FB or lutein were a slight but significant increase in γH2AX+ cells and the raise in the nuclear levels of NRF2. Overall, our findings indicate that the treatment with FB (similarly to lutein) prior to blue light irradiation can alleviate blue-light-induced deleterious effects in RPE cells, specifically preventing the drop in both cell viability and percentage of EdU+ cells, as well as the increase in ROS generation, percentage of γH2AX+ nuclei (more efficiently with FB), and TNF-α secretion (the latter restored only by FB to similar levels to those of the control). On the contrary, the induction in the P21 expression upon blue light irradiation was not prevented neither by FB nor by lutein. Notably, the nuclear translocation of NRF2 induced by blue light was similar to that observed in cells pre-treated with FB, while lutein pre-treatment resulted in nuclear NRF2 levels similar to control cells, suggesting key differences in the mechanism of cellular protection exerted by these compounds. These results may represent the foundation ground for the use of FB as a new ingredient in the development of alternative prophylactic strategies for blue-light-associated diseases, a currently rising medical interest.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Alcaraz-Laso
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Zhang
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, Madrid, Spain.
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CBM); Instituto Universitario de Biología Molecular-IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
3
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
4
|
Xin J, Khishe M, Zeebaree DQ, Abualigah L, Ghazal TM. Adaptive habitat biogeography-based optimizer for optimizing deep CNN hyperparameters in image classification. Heliyon 2024; 10:e28147. [PMID: 38689992 PMCID: PMC11059399 DOI: 10.1016/j.heliyon.2024.e28147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Deep Convolutional Neural Networks (DCNNs) have shown remarkable success in image classification tasks, but optimizing their hyperparameters can be challenging due to their complex structure. This paper develops the Adaptive Habitat Biogeography-Based Optimizer (AHBBO) for tuning the hyperparameters of DCNNs in image classification tasks. In complicated optimization problems, the BBO suffers from premature convergence and insufficient exploration. In this regard, an adaptable habitat is presented as a solution to these problems; it would permit variable habitat sizes and regulated mutation. Better optimization performance and a greater chance of finding high-quality solutions across a wide range of problem domains are the results of this modification's increased exploration and population diversity. AHBBO is tested on 53 benchmark optimization functions and demonstrates its effectiveness in improving initial stochastic solutions and converging faster to the optimum. Furthermore, DCNN-AHBBO is compared to 23 well-known image classifiers on nine challenging image classification problems and shows superior performance in reducing the error rate by up to 5.14%. Our proposed algorithm outperforms 13 benchmark classifiers in 87 out of 95 evaluations, providing a high-performance and reliable solution for optimizing DNNs in image classification tasks. This research contributes to the field of deep learning by proposing a new optimization algorithm that can improve the efficiency of deep neural networks in image classification.
Collapse
Affiliation(s)
- Jiayun Xin
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, 264209, Shandong, China
| | - Mohammad Khishe
- Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
- Center for Artificial Intelligence Applications, Yuan Ze University, Taiwan
| | - Diyar Qader Zeebaree
- Information Technology Department, Technical College of Duhok, Duhok Polytechnic University, Duhok, Iraq
| | - Laith Abualigah
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, 71491, Saudi Arabia
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, 13-5053, Lebanon
- School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya, 27500, Malaysia
| | - Taher M. Ghazal
- Centre for Cyber Physical Systems, Computer Science Department, Khalifa University, United Arab Emirates
- Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Applied Science Research Center, Applied Science Private University, Amman, 11937, Jordan
| |
Collapse
|
5
|
Gu H, Chen P, Liu X, Lian Y, Xi J, Li J, Song J, Li X. Trimethylated chitosan-coated flexible liposomes with resveratrol for topical drug delivery to reduce blue-light-induced retinal damage. Int J Biol Macromol 2023; 252:126480. [PMID: 37634770 DOI: 10.1016/j.ijbiomac.2023.126480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
LED-related blue-light-induced damage can cause eye diseases. However, drug delivery in patients with ocular diseases is faced with various challenges. In this study, we developed flexible liposomes based on trimethylated chitosan (TMC-Lipo) to deliver resveratrol for the treatment of retinal diseases. Flexible liposomes can easily cross various biological barriers. Chitosan and its derivatives have adhesive properties and are widely used in mucoadhesive drug delivery systems. Therefore, we wrapped flexible liposomes with trimethylated chitosan via electrostatic adsorption. The charge of the flexible liposomes became positive after encapsulation in TMC, and they remained stable in artificial tears. We assessed the safety of TMC-Lipo in cellular and zebrafish experiments and found that it can be safely used. In addition, treatment with TMC-Lipo significantly reduced H2O2-induced damage to ARPE-19 cells, restored mitochondrial membrane potential, and protected the cells. TMC-Lipo more easily reached the posterior ocular segment of the mice than liposome nanoparticles and attenuated blue-light-induced retinal cytopathy. Our study demonstrates that effective eye drop formulations can be developed based on trimethylated chitosan, which provides a promising approach for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Lian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong
| | - Jingyao Song
- Department of Ophthalmology, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Goel A, Moinuddin A, Tiwari R, Sethi Y, Suhail MK, Mohan A, Kaka N, Sarthi P, Dutt R, Ahmad SF, Attia SM, Emran TB, Chopra H, Greig NH. Effect of Smartphone Use on Sleep in Undergraduate Medical Students: A Cross-Sectional Study. Healthcare (Basel) 2023; 11:2891. [PMID: 37958035 PMCID: PMC10649238 DOI: 10.3390/healthcare11212891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Smartphone use, particularly at night, has been shown to provoke various circadian sleep-wake rhythm disorders such as insomnia and excessive daytime tiredness. This relationship has been mainly scrutinized among patient groups with higher rates of smartphone usage, particularly adolescents and children. However, it remains obscure how smartphone usage impacts sleep parameters in adults, especially undergraduate college students. This study sought to (1) investigate the association between smartphone use (actual screen time) and four sleep parameters: Pittsburgh sleep quality score (PSQI), self-reported screen time, bedtime, and rise time; (2) compare the seven PSQI components between good and poor sleep quality subjects. In total, 264 undergraduate medical students (aged 17 to 25 years) were recruited from the Government Doon Medical College, Dehradun, India. All participants completed a sleep questionnaire, which was electronically shared via a WhatsApp invitation link. Hierarchical and multinomial regression analyses were performed in relation to (1) and (2). The average PSQI score was 5.03 ± 0.86, with approximately one in two respondents (48.3%) having a poor sleep index. Smartphone use significantly predicted respondents' PSQI score (β = 0.142, p = 0.040, R2 = 0.027), perceived screen time (β = 0.113, p = 0.043, R2 = 343), bedtime (β = 0.106, p = 0.042, R2 = 045), and rise time (β = 0.174, p = 0.015, R2 = 0.028). When comparing poor-quality sleep (PSQI ≥ 5) to good-quality sleep (PSQI < 5), with good-quality sleep as the reference, except sleep efficiency and sleep medications (p > 0.05), five PSQI components declined significantly: subjective sleep quality (β = -0.096, p < 0.001); sleep latency (β = -0.034, p < 0.001); sleep duration (β = -0.038, p < 0.001); sleep disturbances (β = 1.234, p < 0.001); and sleep dysfunction (β = -0.077, p < 0.001). Consequently, public health policymakers should take this evidence into account when developing guidelines around smartphone use-i.e., the when, where, and how much smartphone use-to promote improved sleep behaviour and reduce the rate of sleep-wake rhythm disorders.
Collapse
Affiliation(s)
- Ashish Goel
- Graphic Era Institute of Medical Sciences, Dehradun 248008, Uttarakhand, India; (A.G.); (R.D.)
| | - Arsalan Moinuddin
- School of Sport and Exercise, University of Gloucestershire, Gloucester GL50 2RH, UK
| | - Rajesh Tiwari
- Gautam Buddha Chikitsa Mahavidyalaya, Dehradun 248007, Uttarakhand, India;
| | - Yashendra Sethi
- Government Doon Medical College, Dehradun 248001, Uttarakhand, India;
- PearResearch, Dehradun 248001, Uttarakhand, India;
| | | | - Aditi Mohan
- Veer Chandra Singh Garhwali Government Institute of Medical Science and Research, Srinagar 246174, Uttarakhand, India;
| | - Nirja Kaka
- PearResearch, Dehradun 248001, Uttarakhand, India;
- GMERS Medical College, Himmatnagar 382012, Gujarat, India
| | - Parth Sarthi
- Rajkiya Medical College, Jalaun 395001, Uttar Pradesh, India;
| | - Ravi Dutt
- Graphic Era Institute of Medical Sciences, Dehradun 248008, Uttarakhand, India; (A.G.); (R.D.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (S.M.A.)
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;
| |
Collapse
|
7
|
De Piano M, Cacciamani A, Balzamino BO, Scarinci F, Cosimi P, Cafiero C, Ripandelli G, Micera A. Biomarker Signature in Aqueous Humor Mirrors Lens Epithelial Cell Activation: New Biomolecular Aspects from Cataractogenic Myopia. Biomolecules 2023; 13:1328. [PMID: 37759728 PMCID: PMC10526747 DOI: 10.3390/biom13091328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory, vasculogenic, and profibrogenic factors have been previously reported in vitreous (VH) and aqueous (AH) humors in myopic patients who underwent cataract surgery. In light of this, we selected some mediators for AH and anterior-capsule-bearing lens epithelial cell (AC/LEC) analysis, and AH expression was correlated with LEC activation (epithelial-mesenchymal transition and EMT differentiation) and axial length (AL) elongation. In this study, AH (97; 41M/56F) and AC/LEC samples (78; 35M/43F) were collected from 102 patients who underwent surgery, and biosamples were grouped according to AL elongation. Biomolecular analyses were carried out for AH and LECs, while microscopical analyses were restricted to whole flattened AC/LECs. The results showed increased levels of interleukin (IL)-6, IL-8, and angiopoietin-2 (ANG)-2 and decreased levels of vascular endothelium growth factor (VEGF)-A were detected in AH depending on AL elongation. LECs showed EMT differentiation as confirmed by the expression of smooth muscle actin (α-SMA) and transforming growth factor (TGF)-βR1/TGFβ isoforms. A differential expression of IL-6R/IL-6, IL-8R/IL-8, and VEGF-R1/VEGF was observed in the LECs, and this expression correlated with AL elongation. The higher VEGF-A and lower VEGF-D transcript expressions were detected in highly myopic LECs, while no significant changes were monitored for VEGF-R transcripts. In conclusion, these findings provide a strong link between the AH protein signature and the EMT phenotype. Furthermore, the low VEGF-A/ANG-2 and the high VEGF-A/VEGF-D ratios in myopic AH might suggest a specific inflammatory and profibrogenic pattern in high myopia. The highly myopic AH profile might be a potential candidate for rating anterior chamber inflammation and predicting retinal distress at the time of cataract surgery.
Collapse
Affiliation(s)
- Maria De Piano
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Andrea Cacciamani
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| | - Fabio Scarinci
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Pamela Cosimi
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Concetta Cafiero
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Guido Ripandelli
- Surgical Retina Research Unit, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (A.C.); (F.S.); (P.C.); (G.R.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, 00184 Rome, Italy; (M.D.P.); (B.O.B.)
| |
Collapse
|
8
|
Gorman S. The inhibitory and inactivating effects of visible light on SARS-CoV-2: A narrative update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023; 15:100187. [PMID: 37288364 PMCID: PMC10207839 DOI: 10.1016/j.jpap.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prior to the coronavirus disease-19 (COVID-19) pandemic, the germicidal effects of visible light (λ = 400 - 700 nm) were well known. This review provides an overview of new findings that suggest there are direct inactivating effects of visible light - particularly blue wavelengths (λ = 400 - 500 nm) - on exposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions, and inhibitory effects on viral replication in infected cells. These findings complement emerging evidence that there may be clinical benefits of orally administered blue light for limiting the severity of COVID-19. Possible mechanisms of action of blue light (e.g., regulation of reactive oxygen species) and important mediators (e.g., melatonin) are discussed.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, Perth, Western Australia 6872, Australia
| |
Collapse
|
9
|
Tsai PC, Cheng MH, Peng BH, Jou JH, Cheng YH, Ku YC, Chiu HY, Chou ML, Yeh PT. Permissible viewing times of educational projector and TV. Heliyon 2023; 9:e15522. [PMID: 37180913 PMCID: PMC10173401 DOI: 10.1016/j.heliyon.2023.e15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Projectors have become one major medium in modern teaching, with large area-size displays emerging as an alternative. What concerns the general public is whether such eLearning would impose threat on eyes, by noting blue enriched white light to be hazardous to retina and else. Especially, little was known about their permissible viewing time under a certain viewing clarity. We had hence carried out a quantitative study with the use of a blue-hazard quantification spectrometer to determine the permissible viewing time when using a projector and a large size TV screen for displaying. Surprisingly, the large TV screen could permit a much longer viewing time, meaning which is more eye-friendly. It is plausibly because its resolution is much higher than that of the projector. Two dilemmas were observed in such eLearning; those sitting in the front would suffer a much higher illuminance, leading to a much shorter viewing time, while those sitting in the back would need a far much larger font size to see clearly. To ensure both viewing clarity and a sufficiently long permissible viewing time, orange text on black background is suggested to replace the defaulted black text on white background. The permissible viewing time could hence drastically increase from 1.3 to 83 h at 2 m by viewing a 30 pt font for the TV and from 0.4 to 54 h for the projection. At 6 m, the permissible viewing time was increased from 12 to 236 h for the TV and from 3 to 160 h for the projection, based on a viewable 94 pt font. These results may help educators and other e-display users to wisely apply the display tools with safety.
Collapse
Affiliation(s)
- Pei-Chung Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Ming-Hui Cheng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Bo-Hsun Peng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
- Corresponding author.
| | | | - Yi-Chen Ku
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Hsin-Ya Chiu
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Ming-Li Chou
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Chan YJ, Hsiao G, Wan WN, Yang TM, Tsai CH, Kang JJ, Lee YC, Fang TC, Cheng YW, Li CH. Blue light exposure collapses the inner blood-retinal barrier by accelerating endothelial CLDN5 degradation through the disturbance of GNAZ and the activation of ADAM17. Fluids Barriers CNS 2023; 20:31. [PMID: 37095509 PMCID: PMC10124034 DOI: 10.1186/s12987-023-00430-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Blue light is part of the natural light spectrum that emits high energy. Currently, people are frequently exposed to blue light from 3C devices, resulting in a growing incidence of retinopathy. The retinal vasculature is complex, and retinal vessels not only serve the metabolic needs of the retinal sublayers, but also maintain electrolyte homeostasis by forming the inner blood-retinal barrier (iBRB). The iBRB, which is primarily composed of endothelial cells, has well-developed tight junctions. However, with exposure to blue light, the risks of targeting retinal endothelial cells are currently unknown. We found that endothelial claudin-5 (CLDN5) was rapidly degraded under blue light, coinciding with the activation of a disintegrin and metalloprotease 17 (ADAM17), even at non-cytotoxic lighting. An apparently broken tight junction and a permeable paracellular cleft were observed. Mice exposed to blue light displayed iBRB leakage, conferring attenuation of the electroretinogram b-wave and oscillatory potentials. Both pharmacological and genetic inhibition of ADAM17 remarkably alleviated CLDN5 degradation induced by blue light. Under untreated condition, ADAM17 is sequestered by GNAZ (a circadian-responsive, retina-enriched inhibitory G protein), whereas ADAM17 escapes from GNAZ by blue light illuminance. GNAZ knockdown led to ADAM17 hyperactivation, CLDN5 downregulation, and paracellular permeability in vitro, and retinal damage mimicked blue light exposure in vivo. These data demonstrate that blue light exposure might impair the iBRB by accelerating CLDN5 degradation through the disturbance of the GNAZ-ADAM17 axis.
Collapse
Affiliation(s)
- Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Wang-Nok Wan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Tsung-Min Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jaw-Jou Kang
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Chao Fang
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Wen P, Tan F, Wu M, Cai Q, Xu R, Zhang X, Wang Y, Li S, Lei M, Chen H, Khan MSA, Zou Q, Hu X. Proper use of light environments for mitigating the effects of COVID-19 and other prospective public health emergency lockdowns on sleep quality and fatigue in adolescents. Heliyon 2023; 9:e14627. [PMID: 37064435 PMCID: PMC10027303 DOI: 10.1016/j.heliyon.2023.e14627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a public health emergency of international concern, and some countries still implement strict regional lockdowns. Further, the upcoming 2023 Asian Games and World University Games will implement a closed-loop management system. Quarantine can harm mental and physical health, to which adolescents are more vulnerable compared with adults. Previous studies indicated that light can affect our psychology and physiology, and adolescents were exposed to the artificial light environment in the evening during the lockdown. Thus, this study aimed to establish and assess appropriate residential light environments to mitigate the effects of lockdowns on sleep quality and fatigue in adolescents. The participants were 66 adolescents (12.15 ± 2.45 years of age) in a closed-loop management environment, who participated in a 28-day (7-day baseline, 21-day light intervention) randomized controlled trial of a light-emitting diode (LED) light intervention. The adolescents were exposed to different correlated color temperature (CCT) LED light environments (2000 K or 8000 K) for 1 h each evening. The results for self-reported daily sleep quality indicated that the low CCT LED light environment significantly improved sleep quality (p < 0.05), and the blood test results for serum urea and hemoglobin indicated that this environment also significantly reduced fatigue (p < 0.05) and moderately increased performance, compared to the high CCT LED light environment. These findings can serve as a springboard for further research that aims to develop interventions to reduce the effects of public health emergency lockdowns on mental and physical health in adolescents, and provide a reference for participants in the upcoming Asian Games and World University Games.
Collapse
Affiliation(s)
- Peijun Wen
- School of Physical Education, South China University of Technology, Guangzhou, 510641, China
| | - Fuyun Tan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Meng Wu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Qijun Cai
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Ruiping Xu
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Xiaowen Zhang
- Guangzhou Institute of Sport Science, Guangzhou, 510620, China
| | - Yongzhi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, China
| | - Shukun Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Menglai Lei
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Huanqing Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Muhammad Saddique Akbar Khan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
13
|
Chmielinski MJ, Cohen MA, Yost MG, Simpson CD. Wearable Spectroradiometer for Dosimetry. SENSORS (BASEL, SWITZERLAND) 2022; 22:8829. [PMID: 36433426 PMCID: PMC9697616 DOI: 10.3390/s22228829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Available wearable dosimeters suffer from spectral mismatch during the measurement of broadband UV and visible radiation in environments that receive radiation from multiple sources emitting differing spectra. We observed this type of multi-spectra environment in all five Washington State cannabis farms visited during a field study investigating worker exposure to ultraviolet radiation in 2018. Spectroradiometers do not suffer from spectral mismatch in these environments, however, an extensive literature review conducted at the time of writing did not identify any spectroradiometers that were directly deployable as wearable dosimetry devices. To close this research gap, we developed a microcontroller system and platform that allows for researchers to mount and deploy the Ocean Insight Flame-S Spectroradiometer as a wearable device for measurement of UV and visible wavelengths (300 to 700 nm). The platform validation consisted of comparing measurements taken under platform control with measurements taken with the spectrometer controlled by a personal computer running the software provided by the spectroradiometer manufacturer. Three Mann-Whitney U-Tests (two-tailed, 95% CI), one for each intensity condition, compared the central tendency between the total spectral power (TSP), the integral of a spectrum measurement, measured under both control schemas. An additional analysis of per pixel agreement and overall platform stability was performed. The three Mann-Whitney tests returned no significant difference between the set of TSPs for each filter condition. These results suggest that the spectroradiometer takes measurements of equivalent accuracy under both control schemas, and can be deployed as a wearable device for the measurement of wavelength resolved UV and visible radiation.
Collapse
Affiliation(s)
| | | | | | - Christopher D. Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|