1
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
2
|
Migni A, Mancuso F, Baroni T, Di Sante G, Rende M, Galli F, Bartolini D. Melatonin as a Repairing Agent in Cadmium- and Free Fatty Acid-Induced Lipotoxicity. Biomolecules 2023; 13:1758. [PMID: 38136629 PMCID: PMC10741790 DOI: 10.3390/biom13121758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Cadmium (Cd) is a potentially toxic element with a long half-life in the human body (20-40 years). Cytotoxicity mechanisms of Cd include increased levels of oxidative stress and apoptotic signaling, and recent studies have suggested that these aspects of Cd toxicity contribute a role in the pathobiology of non-alcoholic fatty liver disease (NAFLD), a highly prevalent ailment associated with hepatic lipotoxicity and an increased generation of reactive oxygen species (ROS). In this study, Cd toxicity and its interplay with fatty acid (FA)-induced lipotoxicity have been studied in intestinal epithelium and liver cells; the cytoprotective function of melatonin (MLT) has been also evaluated. (2) Methods: human liver cells (HepaRG), primary murine hepatocytes and Caco-2 intestinal epithelial cells were exposed to CdCl2 before and after induction of lipotoxicity with oleic acid (OA) and/or palmitic acid (PA), and in some experiments, FA was combined with MLT (50 nM) treatment. (3) Results: CdCl2 toxicity was associated with ROS induction and reduced cell viability in both the hepatic and intestinal cells. Cd and FA synergized to induce lipid droplet formation and ROS production; the latter was higher for PA compared to OA in liver cells, resulting in a higher reduction in cell viability, especially in HepaRG and primary hepatocytes, whereas CACO-2 cells showed higher resistance to Cd/PA-induced lipotoxicity compared to liver cells. MLT showed significant protection against Cd toxicity either considered alone or combined with FFA-induced lipotoxicity in primary liver cells. (4) Conclusions: Cd and PA combine their pro-oxidant activity to induce lipotoxicity in cellular populations of the gut-liver axis. MLT can be used to lessen the synergistic effect of Cd-PA on cellular ROS formation.
Collapse
Affiliation(s)
- Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Gabriele Di Sante
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (F.M.); (T.B.); (G.D.S.); (M.R.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
3
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Takalani NB, Monageng EM, Mohlala K, Monsees TK, Henkel R, Opuwari CS. Role of oxidative stress in male infertility. REPRODUCTION AND FERTILITY 2023; 4:e230024. [PMID: 37276172 PMCID: PMC10388648 DOI: 10.1530/raf-23-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2023] [Indexed: 06/07/2023] Open
Abstract
Abstract Infertility affects millions of couples worldwide. Oxidative stress (OS) causes peroxidation of lipids and damage to spermatozoa, thus, reducing the quality of seminal parameters. In addition, the differences in the levels of antioxidants and reactive oxygen species (ROS) caused by intrinsic and extrinsic variables linked to lifestyle, diet, genetics, and OS also contribute to male infertility. High levels of ROS result in sperm damage of sperm parameters due to lipid peroxidation and oxidation of proteins. Other significant causes of ROS include changes in sex hormone levels, sperm DNA damage, including mutations, and immature spermatozoa. Treating the root causes of OS, by changing one's lifestyle, as well as antioxidant therapy, may be helpful strategies to fight OS-related infertility. However, the determination of male infertility induced by OS is currently a challenge in the field of reproductive health research. This review intends to describe the role of oxidative stress on male infertility and the current understanding of its management. Lay summary The inability to conceive affects many couples globally. Oxidative stress refers to imbalances between different oxygen species which can lead to male fertility problems by damaging sperm and semen. Oxidative stress may be caused by several factors, including diets high in fats, sugars and processed foods, lifestyle (including smoking, alcohol consumption and having a sedentary lifestyle), and genetics. Treatment that focuses on the root cause may help combat male infertility. However, there is currently no consensus on the best way to treat male fertility problems, particularly those associated with oxidative stress. This paper describes the role of oxidative stress on male infertility and discusses the current techniques employed in treating male fertility issues.
Collapse
Affiliation(s)
- Ndivhuho B Takalani
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Elizabeth M Monageng
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Thomas K Monsees
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Ralf Henkel
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- LogixX Pharma, Theale, Reading, Berkshire, UK
| | - Chinyerum S Opuwari
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|