1
|
Mumtaz F, Farag BM, Farahat MA, Farouk FA, Aarif MY, Eltresy MH, Amin MH, Habotta OA, Alneghery LM, Alawam AS, Almuqri EA, Aleissa MS, Alhudhaibi AM, Al-Olayan E, Abdel Moneim AE, Ramadan SS. Leek (Allium ampeloprasum var. kurrat) aqueous extract loaded on selenium nanoparticles protects against testis and brain injury induced by mercuric chloride in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9062-9075. [PMID: 38993070 DOI: 10.1002/jsfa.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Mercuric chloride (HgCl2) is poisonous to humans and animals and typically damages the nervous system and other organs. Mercuric chloride exposition disclosed to initiation of oxidative stress pathway can result in a defect in male fertility and testis tissue. Synthesized selenium nanoparticles (SeNPs) were characterized with a diameter range minimal than 100 nm, having the effective sets of the biological matter. The present study aimed to evaluate the effect of biosynthesized SeNPs, prepared by leek extract on Wistar rats' testicles and brain. METHODS Thirty-five Wistar male rats (120-150 g) were randomly split into five groups (n = 7), orally ingested with leek aqueous extract loaded on SeNPs, and then the animals were administered with mercury II chloride (HgCl2) to induce testis injury and damage the nervous system. RESULTS The used dose of mercuric chloride led to oxidative stress damage in the testis of the rats which was evidenced by a decrease in testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and proliferating cell nuclear antigen (PCNA) levels, and an increase in nuclear factor-kappa B (NF-κB) and caspase-3. Also, HgCl2 decreased the levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in the brains of rats. In addition, A decrease was observed in the levels of antioxidant markers, B-cell lymphoma-2 (Bcl-2), as well as an increase in malondialdehyde (MDA), nitric oxide (NO), NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and Bax in both testes and brains. Pre-treatment with leek extract loaded on SeNPs significantly ameliorated testosterone, LH, FSH, PCNA and caspase-3 levels in the testis and DA, 5-HT, NE and BDNF in brains. Although the contents of MDA, NO, TNF-α, IL-1β, NF-κB and Bax decreased significantly in both. glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and Bcl-2 levels were significantly improved in both organs. CONCLUSION Our findings suggest that treatment with aqueous leek extract loaded on SeNPs may offer promising prospects for the advancement of anti-inflammation activity against testis injury and also have a very key role in neurobehavioral alterations as a result of mercury toxicity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farah Mumtaz
- Department of Biology, Collage of Science, University of Babylon, Babylon, Iraq
| | - Bahaa M Farag
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mennatullah A Farahat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma A Farouk
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Moataz Y Aarif
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed H Eltresy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Menna H Amin
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Eman A Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammed S Aleissa
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Yahyazadeh A, Gur FM. Promising the potential of β-caryophyllene on mercury chloride-induced alteration in cerebellum and spinal cord of young Wistar albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03268-4. [PMID: 38995373 DOI: 10.1007/s00210-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Mercury chloride (ME) is a chemical pollutant commonly found in the environment, which can contribute to undesirable health consequence worldwide. The current study investigated the detrimental impact of ME on the cerebellum and spinal cord tissues in 6-8-week-old female rats. We also evaluated the neuroprotective efficacy of β-caryophyllene (BC) against spinal and cerebellar changes caused by ME. Thirty-five young Wistar albino rats were randomly chosen and assigned into five groups: control (CO), olive oil (OI), ME, BC, ME + BC. All samples were analysed by means of unbiased stereological, biochemical, immunohistochemical, and histopathological methods. Our biochemical findings showed that SOD level was significantly increased in the ME group compared to the CO group (p < 0.05). We additionally detected a statistically significant decrease in the number of cerebellar Purkinje cells and granular cells, as well as spinal motor neuron in the ME group compared to the CO group (p < 0.05). In the ME + BC group, the number of Purkinje cells, granular cells, and spinal motor neurons was significantly higher compared to the ME group (p < 0.05). Decreased SOD activity in the ME + BC group was also detected than the ME group (p < 0.05). Immunohistochemical (the tumour necrosis factor-alpha (TNF-α)) and histopathological examinations also exhibited crucial information in each of the group. Taken together, ME exposure was associated with neurotoxicity in the cerebellum and spinal cord tissues. BC treatment also mitigated ME-induced neurological alteration, which may imply its potential therapeutic benefits.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Fatih Mehmet Gur
- Department of Histology and Embryology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| |
Collapse
|
3
|
Morão IFC, Simões T, Casado RB, Vieira S, Ferreira-Airaud B, Caliani I, Di Noi A, Casini S, Fossi MC, Lemos MFL, Novais SC. Metal accumulation in female green sea turtles (Chelonia mydas) from Eastern Atlantic affects their egg quality with potential implications for embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172710. [PMID: 38670375 DOI: 10.1016/j.scitotenv.2024.172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal; Faculdade de Ciências & CESAM, Universidade de Lisboa, Lisboa, Portugal.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Roger B Casado
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Betânia Ferreira-Airaud
- Associação Programa Tatô, São Tomé, São Tomé and Príncipe; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Agata Di Noi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Maria C Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
4
|
Kahramanoğullari M, Erişir M, Yaman M, Parlak Ak T. Effects of naringenin on oxidative damage and apoptosis in liver and kidney in rats subjected to chronic mercury chloride. ENVIRONMENTAL TOXICOLOGY 2024; 39:2937-2947. [PMID: 38308452 DOI: 10.1002/tox.24164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.
Collapse
Affiliation(s)
- Merve Kahramanoğullari
- Department of Biochemistry, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mine Erişir
- Department of Biochemistry, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mine Yaman
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Tuba Parlak Ak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Munzur University, Tunceli, Turkey
| |
Collapse
|
5
|
Maria Francis Y, Karunakaran B, Ashfaq F, Yahia Qattan M, Ahmad I, Alkhathami AG, Idreesh Khan M, Varadhan M, Govindan L, Ponnusamy Kasirajan S. Mercuric Chloride Induced Nephrotoxicity: Ameliorative Effect of Carica papaya Leaves Confirmed by Histopathology, Immunohistochemistry, and Gene Expression Studies. ACS OMEGA 2023; 8:21696-21708. [PMID: 37360438 PMCID: PMC10286259 DOI: 10.1021/acsomega.3c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
The present study analyzes the efficacy of the ethanolic extract of C. papaya leaves (ECP) against HgCl2-induced nephrotoxicity. The effects on the biochemical and percentage of body and organ weight against HgCl2-induced nephrotoxicity in female Wistar rats were studied. Wistar rats were divided into five groups with six animals in each group: control, HgCl2 (2.5 mg/kg b.w.), N-acetylcysteine (NAC 180 mg/kg) + HgCl2, ECP (300 mg/kg b.w.) + HgCl2, and ECP (600 mg/kg) + HgCl2 groups. After 28 days of study, animals were sacrificed on the 29th day to harvest the blood and kidneys for further analysis. The effect ECP was analyzed by immunohistochemistry (NGAL) and real-time PCR (KIM-1 and NGAL mRNA) in HgCl2-induced nephrotoxicity. The results revealed that the HgCl2 group showed prominent damage in the proximal tubules and glomerulus of nephrons and enormous expression of NGAL in immunohistochemistry and KIM-1 and NGAL in real-time PCR compared to the control group. The simultaneous pretreatment with NAC (180 mg/kg) and ECP (600 and 300 mg/kg) reduced renal damage and expression of NGAL in immunohistochemistry and KIM-1 and NGAL gene in real-time PCR. This study attests to the nephroprotective effect of ECP against HgCl2-induced toxicity.
Collapse
Affiliation(s)
- Yuvaraj Maria Francis
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Balaji Karunakaran
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Fauzia Ashfaq
- Department
of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Malak Yahia Qattan
- Health
Sciences Departments, College of Applied Studies and Community Service, King Saud University, KSA-4545, Riyadh 11451, Saudi Arabia
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department
of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohan Varadhan
- Department
of Siddha, TN Dr. MGR Medical University,
Guindy, Chennai 600032, India
| | - Lakshmanan Govindan
- Department
of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Sankaran Ponnusamy Kasirajan
- Department
of Anatomy, All India Institute of Medical
Sciences (AIIMS), Mangalagiri, Andhra Pradesh 522503, India
| |
Collapse
|