1
|
Thomas S, Gonsalves RA, Jose J, Zyoud SH, Prasad AR, Garvasis J. Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review. J Biotechnol 2024; 394:135-149. [PMID: 39159752 DOI: 10.1016/j.jbiotec.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The development of an environmentally benign method for the synthesis of nanoparticles has been facilitated by green chemistry. "Green synthesis" uses a range of biological elements like microbes, plants, and other biodegradable materials to produce NPs. Active biomolecules that are secreted by natural strains and present in the plant extracts serve as both reducing and capping/stabilizing agents. Microorganisms' intracellular enzymes can reduce metal ions, which explains how NPs might potentially nucleate. Plant-based synthesis of nanomaterials is particularly promising owing to abundant resources, simplicity of synthesis, and low cost. Silver nanoparticles (AgNPs) are attracting great attention in the research community due to their wide variety of applications in chemistry, food technology, microbiology, and biomedicine. Recent years have seen a large amount of research on the bio-genic synthesis of AgNPs employing biomaterials like plant extract and bacteria as reducing agents. Herein we discuss a thorough overview of the plant-based synthesis of silver nanoparticles (AgNPs), characterization approaches, applications, and toxicity. The review covers the green chemistry and nanotechnology elements of producing AgNPs, including a thorough discussion of the plant extract mediated synthesis, detailed formation mechanism, and a well-balanced emphasis on hazards and advantages. Based on current developments, the optimisation strategies, applications, and interdisciplinary characteristics are also covered in detail.
Collapse
Affiliation(s)
- Shijith Thomas
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Richard A Gonsalves
- Department of Chemistry, St. Aloysius College (Autonomous), Mangalore 575003, India.
| | - Jomy Jose
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Center of Medical and Bio-Allied Health Science Research, Ajman University, P.O.Box: 346, United Arab Emirates.
| | - Anupama R Prasad
- Department of Chemistry, Christ College (Autonomous), Thrissur 680125, India.
| | - Julia Garvasis
- Department of Chemistry, University of Calicut, Malappuram 680566, India.
| |
Collapse
|
2
|
Soe ZC, Wahyudi R, Mattheos N, Lertpimonchai A, Everts V, Tompkins KA, Osathanon T, Limjeerajarus CN, Limjeerajarus N. Application of nanoparticles as surface modifiers of dental implants for revascularization/regeneration of bone. BMC Oral Health 2024; 24:1175. [PMID: 39367468 PMCID: PMC11451240 DOI: 10.1186/s12903-024-04966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Osseointegrated dental implants are widely established as a first-choice treatment for the replacement of missing teeth. Clinical outcomes are however often compromised by short or longer-term biological complications and pathologies. Nanoparticle-coated materials represent a very active research area with the potential to enhance clinical outcomes and reduce complications of implant therapy. This scoping review aimed to summarize current research on various types of nanoparticles (NPs) used as surface modifiers of dental implants and their potential to promote biological and clinical outcomes. METHODS A systematic electronic search was conducted in SCOPUS, PubMed and Google Scholar aiming to identify in vivo, in situ, or in vitro studies published between 2014 and 2024. Inclusion and exclusion criteria were determined and were described in the methods section. RESULTS A total of 169 articles (44 original papers from Scopus and PubMed, and 125 articles from Google Scholar) were identified by the electronic search. Finally, 30 studies fit the inclusion criteria and were further used in this review. The findings from the selected papers suggest that nanoparticle-coated dental implants show promising results in enhancing bone regeneration and promoting angiogenesis around the implant site. These effects are due to the unique physicochemical properties of nanoparticle-coated implants and the controlled release of bioactive molecules from nanoparticle-modified surfaces. CONCLUSION Nanoscale modifications displayed unique properties which could significantly enhance the properties of dental implants and further accelerate revascularization, and osseointegration while facilitating early implant loading. Yet, since many of these findings were based on in-vitro/in-situ systems, further research is required before such technology reaches clinical application.
Collapse
Affiliation(s)
- Zar Chi Soe
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rahman Wahyudi
- Faculty of Dentistry, Graduate Program in Oral Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nikos Mattheos
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Attawood Lertpimonchai
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Genomics and Precision Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | |
Collapse
|
3
|
Ibrahim NH, Taha GM, Hagaggi NSA, Moghazy MA. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC Chem 2024; 18:7. [PMID: 38184656 PMCID: PMC10771699 DOI: 10.1186/s13065-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
This study marks a pioneering effort in utilizing Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr., (commonly known as acacia raddiana) leaves as both a reducing and stabilizing agent in the green "eco-friendly" synthesis of silver nanoparticles (AgNPs). The research aimed to optimize the AgNPs synthesis process by investigating the influence of pH, temperature, extract volume, and contact time on both the reaction rate and the resulting AgNPs' morphology as well as discuss the potential of AgNPs in detecting some heavy metals. Various characterization methods, such as UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Zeta sizer, EDAX, and transmitting electron microscopy (TEM), were used to thoroughly analyze the properties of the synthesized AgNPs. The XRD results verified the successful production of AgNPs with a crystallite size between 20 to 30 nm. SEM and TEM analyses revealed that the AgNPs are primarily spherical and rod-shaped, with sizes ranging from 8 to 41 nm. Significantly, the synthesis rate of AgNPs was notably higher in basic conditions (pH 10) at 70 °C. These results underscore the effectiveness of acacia raddiana as a source for sustainable AgNPs synthesis. The study also examined the AgNPs' ability to detect various heavy metal ions colorimetrically, including Hg2+, Cu2+, Pb2+, and Co2+. UV-Vis spectroscopy proved useful for this purpose. The color of AgNPs shifts from brownish-yellow to pale yellow, colorless, pale red, and reddish yellow when detecting Cu2+, Hg2+, Co2+, and Pb2+ ions, respectively. This change results in an alteration of the AgNPs' absorbance band, vanishing with Hg2+ and shifting from 423 to 352 nm, 438 nm, and 429 nm for Cu2+, Co2+, and Pb2+ ions, respectively. The AgNPs showed high sensitivity, with detection limits of 1.322 × 10-5 M, 1.37 × 10-7 M, 1.63 × 10-5 M, and 1.34 × 10-4 M for Hg2+, Cu2+, Pb2+, and Co2+, respectively. This study highlights the potential of using acacia raddiana for the eco-friendly synthesis of AgNPs and their effectiveness as environmental sensors for heavy metals, showcasing strong capabilities in colorimetric detection.
Collapse
Affiliation(s)
- Nesma H Ibrahim
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Gharib M Taha
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Noura Sh A Hagaggi
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Marwa A Moghazy
- Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| |
Collapse
|
4
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
5
|
Khan Q, Yousafzai AM. Plant based synthesis of silver nanoparticles, antimicrobial efficiency, and toxicological assessment using freshwater fish (Cyprinus carpio). Microsc Res Tech 2024; 87:53-64. [PMID: 37728059 DOI: 10.1002/jemt.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used and have various applications, including medicine, electronics, and textiles. However, their increasing use raises concern about their potential environmental impact, particularly on aquatic organisms, such as fish, which are the primary consumers of aquatic environments and can be exposed to AgNPs through various routes. For this purpose, the leaves of the plant species Bellis perennis were used as a reductive agent to convert silver nitrate into AgNPs, to assess its toxicity against fish. Well-dispersed and undersized AgNPs were obtained and confirmed using analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Moreover, the AgNPs have shown significant antibacterial activity against Aeromonas hydrophila (25.71 ± 0.63) and Vibrio harveyi (22.39 ± 0.29). In addition, the toxicity of the obtained AgNPs was assessed by exposing Cyprinus carpio to various concentrations, including 0.06, 0.1, and 0.2 mg/L. The findings revealed that the AgNPs were significantly accumulated in the intestine, followed by the gills, liver, muscles, kidney, and brain. This bioaccumulation led to histological alterations and destruction in the villi of the intestine, regeneration of liver cells, and degeneration of the gill lamella. RESEARCH HIGHLIGHTS: Plants based synthesis of AgNPs is mostly considered as eco-friendly A significant antibacterial activity was obtained The plant mediated AgNPs were found less toxic The AgNPs was profoundly accumulated and causes histological alterations.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | |
Collapse
|
6
|
Nasiri K, Masoumi SM, Amini S, Goudarzi M, Tafreshi SM, Bagheri A, Yasamineh S, Alwan M, Arellano MTC, Gholizadeh O. Recent advances in metal nanoparticles to treat periodontitis. J Nanobiotechnology 2023; 21:283. [PMID: 37605182 PMCID: PMC10440939 DOI: 10.1186/s12951-023-02042-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The gradual deterioration of the supporting periodontal tissues caused by periodontitis, a chronic multifactorial inflammatory disease, is thought to be triggered by the colonization of dysbiotic plaque biofilms in a vulnerable host. One of the most prevalent dental conditions in the world, periodontitis is now the leading factor in adult tooth loss. When periodontitis does develop, it is treated by scraping the mineralized deposits and dental biofilm off the tooth surfaces. Numerous studies have shown that non-surgical treatment significantly improves clinical and microbiological indices in individuals with periodontitis. Although periodontal parameters have significantly improved, certain bacterial reservoirs often persist on root surfaces even after standard periodontal therapy. Periodontitis has been treated with local or systemic antibiotics as well as scaling and root planning. Since there aren't many brand-new antibiotics on the market, several researchers are currently concentrating on creating alternate methods of combating periodontal germs. There is a delay in a study on the subject of nanoparticle (NP) toxicity, which is especially concerned with mechanisms of action, while the area of nanomedicine develops. The most promising of them are metal NPs since they have potent antibacterial action. Metal NPs may be employed as efficient growth inhibitors in a variety of bacteria, making them useful for the treatment of periodontitis. In this way, the new metal NPs contributed significantly to the development of efficient anti-inflammatory and antibacterial platforms for the treatment of periodontitis. The current therapeutic effects of several metallic NPs on periodontitis are summarized in this study. This data might be used to develop NP-based therapeutic alternatives for the treatment of periodontal infections.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | - Sara Amini
- School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Mina Goudarzi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mobin Tafreshi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bagheri
- Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical, Yazd, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mariem Alwan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Caggiano M, D’Ambrosio F, Acerra A, Giudice D, Giordano F. Biomechanical Implications of Mandibular Flexion on Implant-Supported Full-Arch Rehabilitations: A Systematic Literature Review. J Clin Med 2023; 12:5302. [PMID: 37629344 PMCID: PMC10455661 DOI: 10.3390/jcm12165302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Mandibular flexion (MF) is a complex biomechanical phenomenon, which involves a deformation of the mandible, due mainly to the contraction of the masticatory muscles, and it can have numerous clinical effects. The deformation of the lower jaw caused by mandibular flexion is generally very small, and it is often overlooked and considered irrelevant from a clinical point of view by many authors; however, it should be important to remember that median mandibular flexure (MMF) has a multifactorial aetiology. The main aim of the current systematic review is to highlight the different factors that can increase MF in order to help clinicians identify patients to whom they should pay more attention. As a secondary outcome, we wanted to analyse the preventive measures and suitable techniques to be adopted to minimise the negative effects of this phenomenon on oral fixed rehabilitations. METHODS The review, which was carried out in accordance with the "Preferred Reporting Items for Systematic reviews and Meta-Analyses" (PRISMA) flowchart, was recorded in the "International Prospective Register of Systematic Reviews" (PROSPERO). As research questions, "Patient/Population, Intervention, Comparison and Outcomes" (PICO) questions were employed. Using the ROBINS-I technique, the risk of bias in non-randomised clinical studies was evaluated. RESULTS The initial electronic search identified over 1300 potential articles, of which 54 studies were included in this systematic review. Information regarding the relationship between MF and individual factors, mandibular movements, impression taking, and fixed rehabilitations were obtained. CONCLUSIONS The studies included in this systematic review showed that MF is greater during protrusive movements, in the posterior areas of the lower jaw, and in patients with brachial facial type, greater jaw length; small gonial angle; and less density, length, and bone surface of the symphysis. The biomechanical effects of mandibular flexion on fixed restorations are debated. Prospective clinical and radiological observational studies should be conducted to evaluate the potential short-, medium-, and long-term consequences of MF.
Collapse
Affiliation(s)
- Mario Caggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Allende, Baronissi, 84081 Salerno, Italy; (F.D.); (D.G.); (F.G.)
| | | | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Allende, Baronissi, 84081 Salerno, Italy; (F.D.); (D.G.); (F.G.)
| | | | | |
Collapse
|
8
|
Van Hao N, Tung DH, Hung NP, Hoa VX, Ha NT, Khanh Van NT, Tan PT, Van Trinh P. Green, facile and fast synthesis of silver nanoparticles by using solution plasma techniques and their antibacterial and anticancer activities. RSC Adv 2023; 13:21838-21849. [PMID: 37475759 PMCID: PMC10354697 DOI: 10.1039/d3ra03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
We herein present a simple, fast, efficient and environmentally friendly method for preparing silver nanoparticles (AgNPs) using the solution plasma method in the presence of extracts from Paramignya trimera (P. trimera). The effects of P. trimera extract concentrations and the applied voltage on the formation of AgNPs were investigated. Surface plasmon resonance spectra show a strong peak at 413 nm for the prepared samples. The Fourier-transform infrared spectroscopy measurement results indicated the presence of possible functional groups in the prepared AgNPs. Morphological analysis revealed that the AgNPs were spherical with an average size of 8 nm. The prepared AgNPs exhibited good stability in solution compared to that of AgNPs prepared by the solution plasma technique without P. trimera extract. The formation mechanism of AgNPs is also proposed. The prepared AgNPs exhibited high antibacterial ability against Gram (+) Staphylococcus aureus, Gram (-) Pseudomonas aeruginosa bacteria and strong anticancer activity for the AGS gastric cancer cell line. The obtained results demonstrated that this is a simple, rapid, environmentally friendly method for preparing AgNPs instead of conventional methods using chemical reducing agents for potential applications.
Collapse
Affiliation(s)
- Nguyen Van Hao
- Institute of Sciences and Technology, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Do Hoang Tung
- Institute of Physics, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam
| | - Nguyen Phu Hung
- Faculty of Biotechnology, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Vu Xuan Hoa
- Institute of Sciences and Technology, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Ngo Thu Ha
- Faculty of Biotechnology, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Nguyen Thi Khanh Van
- Institute of Sciences and Technology, TNU - University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Pham The Tan
- Hung Yen University of Technology and Education Khoai Chau Distr. Hung Yen Province Vietnam
| | - Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 94 319 0301
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam
| |
Collapse
|
9
|
Bharathi D, Thiruvengadam Nandagopal JG, Lee J, Ranjithkumar R. Facile Synthesis and Characterization of Chitosan Functionalized Silver Nanoparticles for Antibacterial and Anti-Lung Cancer Applications. Polymers (Basel) 2023; 15:2700. [PMID: 37376346 DOI: 10.3390/polym15122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In the treatment of bacterial contamination, the problem of multi-drug resistance is becoming an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth. The current work investigates the green production of chitosan functionalized silver nanoparticles (CS/Ag NPs) using Sida acuta and their inhibition efficacy against bacterial pathogens and lung cancer cells (A549). Initially, a brown color formation confirmed the synthesis, and the chemical nature of the synthesized NPs were examined by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). FTIR demonstrated the occurrence of CS and S. acuta functional groups in the synthesized CS/Ag NPs. The electron microscopy study exhibited CS/Ag NPs with a spherical morphology and size ranges of 6-45 nm, while XRD analysis demonstrated the crystallinity of Ag NPs. Further, the bacterial inhibition property of CS/Ag NPs was examined against K. pneumoniae and S. aureus, which showed clear inhibition zones at different concentrations. In addition, the antibacterial properties were further confirmed by a fluorescent AO/EtBr staining technique. Furthermore, prepared CS/Ag NPs exhibited a potential anti-cancer character against a human lung cancer cell line (A549). In conclusion, our findings revealed that the produced CS/Ag NPs could be used as an excellent inhibitory material in industrial and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Rajamani Ranjithkumar
- Viyen Biotech LLP, Coimbatore 641031, Tamil Nadu, India
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore 641006, Tamil Nadu, India
| |
Collapse
|
10
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
11
|
Ganguli S, Howlader S, Ullah AA, Bhuiyan FR, Akhi AA, Hasan A, Dey K, Islam S, Ali F, Chakraborty AK, Bhattacharjee S, Dey BK. Size controlled biosynthesis of silver nanoparticles using Ophiorrhiza mungos, Ophiorrhiza harrisiana and Ophiorrhiza rugosa aqueous leaf extract and their antimicrobial activity. Heliyon 2023; 9:e16072. [PMID: 37215826 PMCID: PMC10196522 DOI: 10.1016/j.heliyon.2023.e16072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
In this work, the aqueous leaf extracts of three Ophiorrhiza genus species, namely Ophiorrhiza mungos (Om), Ophiorrhiza harrisiana (Oh) and Ophiorrhiza rugosa (Or), have been used as the reducing and capping agents to control the size of AgNPs, Om-AgNPs, Oh-AgNPs and Or-AgNPs, respectively and found to be an effective antimicrobial agent against a wide range of bacteria and fungi. The biosynthesized AgNPs were studied by UV-Visible spectrophotometer, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM) and Fourier transform infrared spectrometer (FTIR). The average particle sizes of Om-AgNPs, Oh-AgNPs and Or-AgNPs were measured as 17 nm, 22 nm and 26 nm, respectively, and observed to be spherical and face-centered cubic crystals. The antibacterial test of synthesized AgNPs was performed against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Vibrio cholerae where the maximum antibacterial activity was observed by reducing the nano-size and increasing the silver content of AgNPs. The antifungal effect of these three types of AgNPs on Penicillium notatum and Aspergillus niger was also evaluated and their growth with AgNPs concentrations of 450 μg/mL was inhibited up to 80-90% and 55-70%, respectively. The size-control synthesis of AgNPs using the Ophiorrhiza genus species is presented here for the first time where the synthesized AgNPs showed higher stability and antimicrobial activities. Therefore, this study might lead to synthesize AgNPs with different morphologies using plant extracts of the same genus but from different species and provide strong encouragement for future applications in treating infectious diseases.
Collapse
Affiliation(s)
- Sumon Ganguli
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A.K.M. Atique Ullah
- Nanoscience and Technology Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Aklima A. Akhi
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Abid Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, Bangladesh Council of Scientific and Industrial Resaerch (BCSIR), Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Ferdousi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Samiran Bhattacharjee
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Benu Kumar Dey
- Department of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram, 4331, Bangladesh
| |
Collapse
|
12
|
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon 2023; 9:e15973. [PMID: 37215906 PMCID: PMC10192772 DOI: 10.1016/j.heliyon.2023.e15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Amran Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|