1
|
Wahba MI. Grafted calcium pectinate-whey protein isolate covalent immobilizers: Optimization, kinetics, thermodynamics, and application. J Biotechnol 2024; 388:35-48. [PMID: 38641136 DOI: 10.1016/j.jbiotec.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Whey protein isolate (WPI) was incorporated within calcium pectinate (CPT) beads in order to boost their anionic qualities and meliorate their glutaraldehyde (GA)-polyethyleneimine (PEI) grafting process. The Box-Behnken Design (BBD) verified that WPI inclusion significantly raised the GA-PEI-CPT-WPI beads immobilized β-D-galactosidase (iβ-GLD) activity. The BBD also revealed the optimal settings for WPI concentration, PEI pH, PEI concentration, and GA concentration, which were 2.91 %, 10.8, 3.5 %, and 2.24 %, respectively. The GA-PEI-CPT-WPI beads grafting process was scrutinized via FTIR, EDX, and SEM. The optimal GA-PEI-CPT-WPI immobilizers provided fine β-GLD immobilization efficiencies, which reached up to 65.28 %. The free and GA-PEI-CPT-WPI iβ-GLDs pH and temperature profiles were scrutinized. It was also unveiled that the thermal stability of the iβ-GLD surpassed that of its free compeer as it provided lesser kd and ΔS values and larger t1/2, D-values, Ed, ΔH, and ΔG values. Furthermore, the iβ-GLD provided 92.00±3.39 % activity after 42 storage days, which denoted its fine storage stability. The iβ-GLD short duration (15 min) operational stability was also inspected, and 82.70±0.78 % activity was provided during the fifteenth degradation run. Moreover, the iβ-GLD long duration (24 h) operational stability was inspected while degrading the lactose of buffered lactose solution (BLS) and cheese whey (CW). It was unveiled that 81.86±0.96 % and 73.58±2.24 % of the initial glucose were detected during the sixth degradation runs, respectively.
Collapse
Affiliation(s)
- Marwa I Wahba
- Department of Chemistry of Natural and Microbial Products, National Research Centre, El-Behooth St., Dokki, Giza, Egypt; Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, El-Behooth St., Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Punia P, Singh L. Evaluation of free and immobilized cellulase on chitosan-modified magnetic nanoparticles for saccharification of sorghum residue. Bioprocess Biosyst Eng 2024; 47:737-751. [PMID: 38607415 DOI: 10.1007/s00449-024-03010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Enzymatic hydrolysis plays a pivotal role in transforming lignocellulosic biomass. Addressing alternate techniques to optimize the utilization of cellulolytic enzymes is one strategy to improve its efficiency and lower process costs. Cellulases are highly specific and environmentally benign biocatalysts that break down intricate polysaccharides into simple forms of sugars. In contrast to the most difficult and time-consuming enzyme immobilization processes, in this research, we studied simple, mild, and successful techniques for immobilization of pure cellulase on magnetic nanocomposites using glutaraldehyde as a linker and used in the application of sorghum residue biomass. Fe3O4 nanoparticles were coated with chitosan from the co-precipitation method, which served as an enzyme carrier. The nanoparticles were observed under XRD, Zeta Potential, FESEM, VSM, and FTIR. The size morphology results presented that the Cs@Fe3O4 have 42.2 nm, while bare nanoparticles (Fe3O4) have 31.2 nm in size. The pure cellulase reaches to 98.07% of loading efficiency and 71.67% of recovery activity at optimal conditions. Moreover, immobilized enzyme's pH stability, thermostability, and temperature tolerance were investigated at suitable conditions. The kinetic parameters of free and immobilized enzyme were estimated as Vmax; 29 ± 1.51 and 27.03 ± 2.02 µmol min-1 mg-1, Km; 4.7 ± 0.49 mM and 2.569 ± 0.522 mM and Kcat; 0.13 s-1, and 0.89 s-1. Sorghum residue was subjected to 2% NaOH pre-treatment at 50 ℃. Pre-treated biomass contains cellulose of 64.8%, used as a raw material to evaluate the efficiency of reducing sugar during hydrolysis and saccharification of free and immobilized cellulase, which found maximum concentration of glucose 5.42 g/L and 5.12 g/L on 72 h. Thus, our study verifies the use of immobilized pure cellulase to successfully hydrolyze raw material, which is a significant advancement in lignocellulosic biorefineries and the reusability of enzymes.
Collapse
Affiliation(s)
- Pallavi Punia
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Lakhvinder Singh
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
3
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
4
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
5
|
Esparza-Flores EE, Cardoso FD, Siquiera LB, Santagapita PR, Hertz PF, Rodrigues RC. Genipin crosslinked porous chitosan beads as robust supports for β-galactosidase immobilization: Characterization, stability, and bioprocessing potential. Int J Biol Macromol 2023; 250:126234. [PMID: 37567531 DOI: 10.1016/j.ijbiomac.2023.126234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to modify the porosity of chitosan beads using Na2CO3 as a porogen agent and to crosslink them with genipin for the immobilization of β-galactosidase from Aspergillus oryzae. Immobilization was performed under four different pH conditions (4.5, 6.0, 7.5, and 9.0), resulting in biocatalysts named B4, B6, B7, and B9, respectively. The immobilized enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage, and operational stability. The optimal conditions for the support were determined as 50 mM Na2CO3. The biocatalyst exhibited nearly 100 % retention of initial activity after 5 h of incubation at different pH conditions and showed improved thermal stability compared to the free enzyme across all pH conditions. After 50 cycles of lactose hydrolysis, all biocatalysts retained at least 71 % of their initial activity, with B6 retaining nearly 100 %. Scanning electron microscopy revealed structural modifications, particularly in B4, leading to weakened support structure after reuse. Continuous lactose hydrolysis showed increased productivity from 41.3 to 48.1 g L-1 h-1 for B6, with 78.1 % retention of initial capacity. All biocatalysts retained >95 % activity when stored at 4 °C for 20 weeks, highlighting their suitability for enzyme immobilization in continuous and discontinuous bioprocesses.
Collapse
Affiliation(s)
- Elí Emanuel Esparza-Flores
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil; Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Fernanda Dias Cardoso
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Larisa Bertoldo Siquiera
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Patricio R Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica & CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Plinho F Hertz
- Enzymology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil
| | - Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Ave, P. O. Box 15090, ZC 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Ahmed N, Chandra Dey S, Mustary N, Ashaduzzaman M. pH regulated lactose inspired fabrication of zinc oxide nanoparticles for insulin sensing by LSPR absorption. Heliyon 2023; 9:e18153. [PMID: 37560710 PMCID: PMC10407673 DOI: 10.1016/j.heliyon.2023.e18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Nanostructured metal oxide particles with diversified morphologies are in high demand in nanotechnology. The particle size, shape, and overall geometry mainly depend on the fabrication method. This study reports synthesis of zinc oxide nanoparticles (ZnO NPs) from zinc nitrate hexahydrate [Zn(NO3)2.6H2O] precursor in aqueous media at 65 °C by using lactose from cow milk as a reducing agent and regulating pH from 6 to 10. UV-visible absorption gave maximum absorbance (λmax) at 371-375 nm in ethanol for localized surface plasmon resonance (LSPR), FTIR exhibited bands at ca. 439-481 cm-1 for stretching mode Zn-O bonds, and XRD peaks at 2 θ values at 31.8, 34.45, and 36.28° confirmed the fabricated ZnO NPs. The XRD spectra also indicated that the ZnO crystallite (20-30 nm) has a hexagonal wurtzite structure. The average particle sizes measured by DLS were ca. 50-837 nm, and SEM microphotographs demonstrated the morphology of ZnO NPs with a hexagonal, rod-shaped, or spike-like structure. The ZnO NPs were used to investigate the LSPR absorption at various concentrations of insulin, ranging from 2.5 μM to 50 μM. The ZnO NPs fabricated at pH 7 and 10 showed better insulin sensing performance with high precision. The synthesis approach of ZnO NPs with variable morphologies would play a significant function in biomedical science especially real time monitoring of glucose for efficient management of diabetes.
Collapse
Affiliation(s)
- Nasim Ahmed
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhaka, 1205, Bangladesh
| | - Shaikat Chandra Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC, 27695, USA
| | - Nusrat Mustary
- Department of Community Medicine, Dhaka National Medical College, 53/1 Johnson Road, Dhaka, 1100, Bangladesh
| | - Md Ashaduzzaman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Advanced Materials, Ulrika, Linkoping, Sweden
| |
Collapse
|