1
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Yakubu J, Pandey AV. Innovative Delivery Systems for Curcumin: Exploring Nanosized and Conventional Formulations. Pharmaceutics 2024; 16:637. [PMID: 38794299 PMCID: PMC11125045 DOI: 10.3390/pharmaceutics16050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Curcumin, a polyphenol with a rich history spanning two centuries, has emerged as a promising therapeutic agent targeting multiple signaling pathways and exhibiting cellular-level activities that contribute to its diverse health benefits. Extensive preclinical and clinical studies have demonstrated its ability to enhance the therapeutic potential of various bioactive compounds. While its reported therapeutic advantages are manifold, predominantly attributed to its antioxidant and anti-inflammatory properties, its efficacy is hindered by poor bioavailability stemming from inadequate absorption, rapid metabolism, and elimination. To address this challenge, nanodelivery systems have emerged as a promising approach, offering enhanced solubility, biocompatibility, and therapeutic effects for curcumin. We have analyzed the knowledge on curcumin nanoencapsulation and its synergistic effects with other compounds, extracted from electronic databases. We discuss the pharmacokinetic profile of curcumin, current advancements in nanoencapsulation techniques, and the combined effects of curcumin with other agents across various disorders. By unifying existing knowledge, this analysis intends to provide insights into the potential of nanoencapsulation technologies to overcome constraints associated with curcumin treatments, emphasizing the importance of combinatorial approaches in improving therapeutic efficacy. Finally, this compilation of study data aims to inform and inspire future research into encapsulating drugs with poor pharmacokinetic characteristics and investigating innovative drug combinations to improve bioavailability and therapeutic outcomes.
Collapse
Affiliation(s)
- Jibira Yakubu
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital, Inselspital, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
El-Sayed HS, Saad AS, Tawfik WA, Adel A, Abdelmagid MA, Momenah MA, Azab DM, Omar SE, El-Habbaa AS, Bahshwan SMA, Alghamdi AM, El-Saadony MT, El-Tarabily KA, El-Mayet FS. The role of turmeric and black pepper oil nanoemulsion in attenuating cytokine storm triggered by duck hepatitis A virus type I (DHAV-I)-induced infection in ducklings. Poult Sci 2024; 103:103404. [PMID: 38242053 PMCID: PMC10831264 DOI: 10.1016/j.psj.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.
Collapse
Affiliation(s)
- Hemat S El-Sayed
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Aalaa S Saad
- Biotechnology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam A Tawfik
- Holding Company for Biological Products and Vaccines, Dokki, Giza 12311, Egypt; NaQaa Nanotechnology Network (NNN), Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalia M Azab
- Biochemistry Department (Pharmacology), Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Ayman S El-Habbaa
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Fouad S El-Mayet
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Law SK, Leung AWN, Xu C. Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2-A Review. Pharmaceuticals (Basel) 2023; 17:34. [PMID: 38256868 PMCID: PMC10818644 DOI: 10.3390/ph17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). METHODS To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. RESULTS Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. CONCLUSION The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions.
Collapse
Affiliation(s)
- Siu Kan Law
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | | - Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|