1
|
Kherouf A, Kherouf M, Aouacheri O, Doghmane A, Saka S, Adem Ş. Boswellia serrata Powder Regimen Provides Significant Protection Against Renal Damage and Blood Imbalances in Diabetic Rats. Chem Biodivers 2024:e202402200. [PMID: 39648806 DOI: 10.1002/cbdv.202402200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Diabetic kidney disease affects approximately one-third of diabetes patients. Hyperglycemia and oxidative stress contribute to this condition. Boswellia serrata gum resin is known for its antioxidant properties and potential in managing diabetic complications, though its nephroprotective effects are not well documented. This research aimed to determine the phytochemical constituents of B. serrata using LC-MS analysis and explore its benefits in enhancing hematological markers and improving STZ-induced renal dysfunction in rats. Diabetes was induced by a single dose of streptozotocin (60 mg/kg). A total of 40 male albino Wistar rats were divided into four groups: normal control, control with B. serrata (2% w/w), and two diabetic groups. One diabetic group served as a positive control, whereas the other received B. serrata powder (2% w/w). Results showed that the powder reduced blood sugar, decreased renal markers, increased albumin, total protein, and restored hematological parameters. It also enhanced β-cell function and prevented kidney structural abnormalities. Additionally, B. serrata reduced oxidative stress by lowering malondialdehyde and increasing glutathione, glutathione-S-transferase, catalase, and glutathione peroxidase in renal tissues. LC-MS identified 37 phenolic compounds, with apigetrin being the most abundant. These findings suggest that B. serrata holds promise for managing diabetes-related kidney injury.
Collapse
Affiliation(s)
- Amel Kherouf
- Laboratory of Microbiology and Molecular Biology, University of Badji Mokhtar, Annaba, Algeria
| | - Marwa Kherouf
- Laboratory of Microbiology and Molecular Biology, University of Badji Mokhtar, Annaba, Algeria
| | - Ouassila Aouacheri
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Amina Doghmane
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Saad Saka
- Laboratory of Animal Ecophysiology, Department of Biology, University of Badji Mokhtar, Annaba, Algeria
| | - Şevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
2
|
Abd El-Aal SA, El-Sayyad SM, El-Gazar AA, Salaheldin Abdelhamid Ibrahim S, Essa MA, Abostate HM, Ragab GM. Boswellic acid and apigenin alleviate methotrexate-provoked renal and hippocampal alterations in rats: Targeting autophagy, NOD-2/NF-κB/NLRP3, and connexin-43. Int Immunopharmacol 2024; 134:112147. [PMID: 38718656 DOI: 10.1016/j.intimp.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1β cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Shorouk M El-Sayyad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | | - Marwa A Essa
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Heba M Abostate
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
3
|
Lin ZR, Bao MY, Xiong HM, Cao D, Bai LP, Zhang W, Chen CY, Jiang ZH, Zhu GY. Boswellianols A-I, Structurally Diverse Diterpenoids from the Oleo-Gum Resin of Boswellia carterii and Their TGF- β Inhibition Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1074. [PMID: 38674483 PMCID: PMC11054202 DOI: 10.3390/plants13081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Olibanum, a golden oleo-gum resin from species in the Boswellia genus (Burseraceae family), is a famous traditional herbal medicine widely used around the world. Previous phytochemical studies mainly focused on the non-polar fractions of olibanum. In this study, nine novel diterpenoids, boswellianols A-I (1-9), and three known compounds were isolated from the polar methanolic fraction of the oleo-gum resin of Boswellia carterii. Their structures were determined through comprehensive spectroscopic analysis as well as experimental and calculated electronic circular dichroism (ECD) data comparison. Compound 1 is a novel diterpenoid possessing an undescribed prenylmaaliane-type skeleton with a 6/6/3 tricyclic system. Compounds 2-4 were unusual prenylaromadendrane-type diterpenoids, and compounds 5-9 were new highly oxidized cembrane-type diterpenoids. Compounds 1 and 5 showed significant transforming growth factor β (TGF-β) inhibitory activity via inhibiting the TGF-β-induced phosphorylation of Smad3 and the expression of fibronectin and N-cadherin (the biomarker of the epithelial-mesenchymal transition) in a dose-dependent manner in LX-2 human hepatic stellate cells, indicating that compounds 1 and 5 should be potential anti-fibrosis agents. These findings give a new insight into the chemical constituents of the polar fraction of olibanum and their inhibitory activities on the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi-Rong Lin
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Meng-Yu Bao
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Hao-Ming Xiong
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Dai Cao
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Cheng-Yu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China;
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; (Z.-R.L.); (M.-Y.B.); (H.-M.X.); (D.C.); (L.-P.B.); (W.Z.)
| |
Collapse
|
4
|
Kosolapov D, Jáč P, Riasová P, Poušková J, Polášek M, Nováková L. Advances and Challenges in the Analysis of Boswellic Acids by Separation Methods. Crit Rev Anal Chem 2024:1-27. [PMID: 38462842 DOI: 10.1080/10408347.2024.2312502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.
Collapse
Affiliation(s)
- Dmytro Kosolapov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Jáč
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Riasová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jitka Poušková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miroslav Polášek
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
6
|
Amer SA, Behairy A, Abd El-Rahman GI, Gouda A, Abdel-Warith AWA, Younis EM, Moustafa AA, Abdel Moniem H, Davies SJ, EL-Sayed Kamel A. Evaluation of dietary supplementation of frankincense oil on broiler chicken growth performance, hepatic histomorphology, antioxidant activity, blood biochemical parameters, and inflammatory responses. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023; 22:841-855. [DOI: 10.1080/1828051x.2023.2248177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Shimaa A. Amer
- Department of Nutrition and Clinical Nutrition, Zagazig University, Zagazig, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | | | - Ahmed Gouda
- Department of Animal Production, Agricultural & Biological Research Division, Center of National Research, Dokki, Cairo, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr A. Moustafa
- Department of Biochemistry, Zagazig University, Zagazig, Egypt
| | - Hebatallah Abdel Moniem
- Animal Production, Department of Animal Wealth Development, Suez Canal University, Ismailia, Egypt
| | - Simon J. Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, Galway, Ireland
| | - Asmaa EL-Sayed Kamel
- Department of Nutrition and Clinical Nutrition, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Gnedy MM, Hussien RA, Sleem RA, Elkelish A, AlHarbi M, Alharbi BM, Sayed AA. In vitro efficacy of Boswellia carterii resin extracts formulated as an emulsifiable concentrate against Tetranychus urticae and phytopathogenic fungi. Saudi J Biol Sci 2023; 30:103843. [PMID: 38020231 PMCID: PMC10651685 DOI: 10.1016/j.sjbs.2023.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Contemporary agriculture heavily relies on pesticides for pest eradication and disease management. Consequently, current study was carried out to assess the acaricidal/antifungal efficacy of emulsifiable concentrate (10 % EC) derived from Boswellia carterii (B. carterii) against adult females of Tetranychus urticae (T. urticae), and five fungal pathogens. The meticulous examination of the chemical constitution of the crude extracts derived from the resin of B. carterii was conducted through the employment of the venerable technique known as Gas-Liquid Chromatography (GLC). The formulated petroleum-ether extract (FPEE) and formulated ethyl-acetate extract (FEAE) of B. carterii at a concentration of 10 mg ml-1 exhibited notable antioxidant activity with rates of 62.0 % and 90.8 %, respectively. In vitro, the FEAE exhibited potent inhibition against all the tested phytopathogenic fungi at different concentrations, whereas FPEE showed comparatively less efficacy. Interestingly, at 4000 ppm concentration, FEAE completely ceased the mycelial growth compared with the control. Moreover, following a span of 72 h of intervention, FPEE exhibited a greater degree of toxicity towards mature females of the T. urticae. This was evidenced by the LC50 value of 422.52 parts per million (ppm) for FPEE, which surpassed the LC50 value of 539.50 ppm observed for FEAE. In summary, the present study indicates that B. carterii resin formulated as an emulsifiable concentrate (10 % EC) can offer a natural and effective alternative for integrated pest management, thereby reducing reliance on synthetic pesticides and offering a more environmentally sustainable strategy for pest control.
Collapse
Affiliation(s)
- Mai M.A. Gnedy
- Pesticide Formulation Research Department, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Giza 11835, Egypt
| | - Rania A.A. Hussien
- Fungicides, Bactericides and Nematicides Department, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Giza 11835, Egypt
| | - Rasha A. Sleem
- Bioassay Department, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Giza 11835, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department., Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali A.S. Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
8
|
Mehmood A, Javid S, Khan MF, Ahmad KS, Mustafa A. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem 2022; 16:64. [PMID: 36030245 PMCID: PMC9419333 DOI: 10.1186/s13065-022-00858-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Recently, an interest has surged in utilizing indigenous medicinal plants to treat infectious illnesses and extract bioactive substances, highlighting the need to analyze medicinal plants for phytochemicals and bioactivities. The present study was aimed to evaluate the impact of different solvent systems (aqueous, ethanol, and methanol) used for extraction on total phenolics, total flavonoids, antioxidant, and antibacterial activity of three medicinal plants of Azad Kashmir (Achillea millefolium, Bergenia ciliata, and Aloe vera). High phenolic content was found in methanol extracts of B. ciliata (27.48 ± 0.58 mg GAE/g dry weight), A. vera (25.61 ± 0.33 mg GAE/g dry weight), and A. millefolium (24.25 ± 0.67 mg GAE/g dry weight). High flavonoid content was obtained in the ethanol extract of A. millefolium (27.13 ± 0.64 mg QE/g dry weight), methanol extract of B. ciliata (17.44 ± 0.44 ± 0.44 mg QE/g dry weight), and the methanol extract of A. vera (14.68 ± 0.67 mg QE/g dry weight). Strong 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH) was obtained with a methanol extract of B. ciliata (IC50 = 60.27 ± 0.20 µg/mL). With a zone of inhibition and a minimum inhibitory concentration ranging from 10.00 ± 0.66 to 24.67 ± 1.21 mm and 78 to 625 µg/mL, respectively, all of the studied plants demonstrated notable antibacterial activity against Staphylococcus aureus and Escherichia coli. A. vera showed greater antibacterial activity as compared to other plants under study while methanolic extract showed greater antibacterial activity than ethanolic and aqueous extract. The findings of this research support the use of these medicinal plants to treat a variety of diseases.
Collapse
Affiliation(s)
- Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, Azad Kashmir, 12350, Pakistan.
| | - Sonia Javid
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Muhammad Faraz Khan
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Amna Mustafa
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, Azad Kashmir, 12350, Pakistan
| |
Collapse
|
9
|
Almeida-da-Silva CLC, Sivakumar N, Asadi H, Chang-Chien A, Qoronfleh MW, Ojcius DM, Essa MM. Effects of Frankincense Compounds on Infection, Inflammation, and Oral Health. Molecules 2022; 27:molecules27134174. [PMID: 35807419 PMCID: PMC9268443 DOI: 10.3390/molecules27134174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Boswellia trees, found throughout the Middle East and parts of Africa and Asia, are the source of frankincense oil. Since antiquity, frankincense has been traded as a precious commodity, but it has also been used for the treatment of chronic disease, inflammation, oral health, and microbial infection. More recently, the bioactive components of Boswellia trees have been identified and characterized for their effects on cancer, microbial infection (especially infection by oral pathogens), and inflammation. Most studies have focused on cell lines, but more recent research has also investigated effects in animal models of disease. As natural products are considered to be safer than synthetic drugs, there is growing interest in further developing the use of substances such as frankincense oil for therapeutic treatment.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman;
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Anna Chang-Chien
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA;
| | - M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha 0974, Qatar;
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
- Correspondence:
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
10
|
In Vivo Antiinflammatory Activity of Facile Boswellic Acid Silver Nanoparticles and In Vitro Drug Release Kinetics. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Jameel QY, Mohammed NK. Protective rules of natural antioxidants against gamma-induced damage-A review. Food Sci Nutr 2021; 9:5263-5278. [PMID: 34532033 PMCID: PMC8441341 DOI: 10.1002/fsn3.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals accessible in food have demonstrated efficiency against impairment by gamma radiation. The review presented here is an attempt to show the pharmacological outline of the activity of the natural antioxidants and its primary action of molecular mechanism against the damage induced by gamma rays. This research focused on the results of the in vitro dosage of natural antioxidants relationship, and on the correlation of this information with the statistical variables. Moreover, it deliberated the natural compounds which could decrease the unwelcome impacts of gamma radiation and safeguard biological systems from radiation-stimulated genotoxicity. The outcomes indicated that natural compounds can be utilized as an adjunct to orthodox radiotherapy and cultivate it as an effectual drug for the clinical administration of ailments.
Collapse
Affiliation(s)
- Qaswaa Y. Jameel
- Department of Food ScienceColleges of Agricultural and ForestryMosul UniversityMosulIraq
| | - Nameer K. Mohammed
- Department of Food ScienceCollege of AgricultureTikrit UniversityTikritIraq
| |
Collapse
|
12
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
13
|
Guadie A, Dakone D, Unbushe D, Wang A, Xia S. Antibacterial activity of selected medicinal plants used by traditional healers in Genta Meyche (Southern Ethiopia) for the treatment of gastrointestinal disorders. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Amalraj A, Jacob J, Varma K, Kunnumakkara AB, Divya C, Gopi S. Acujoint™, a highly efficient formulation with natural bioactive compounds, exerts potent anti-arthritis effects in human osteoarthritis – A pilot randomized double blind clinical study compared to combination of glucosamine and chondroitin. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|