1
|
Lin BZ, Fan AC, Wang Y, Lowerison MR, Dong Z, You Q, Sekaran NVC, Llano D, Borden M, Song P. Combined Nanodrops Imaging and Ultrasound Localization Microscopy for Detecting Intracerebral Hemorrhage. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00002-X. [PMID: 39837748 DOI: 10.1016/j.ultrasmedbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE Advanced imaging methods are crucial for understanding stroke mechanisms and discovering effective treatments to reduce bleeding and enhance recovery. In pre-clinical in vivo stroke imaging, MRI, CT and optical imaging are commonly used to evaluate stroke outcomes in rodent models. However, MRI and CT have limited spatial resolution for rodent brains, and optical imaging is hindered by limited imaging depth of penetration. Here we introduce a novel contrast-enhanced ultrasound imaging method to overcome these challenges and characterize intracerebral hemorrhage with unique insights. METHODS We combined microbubble-based ultrasound localization microscopy (ULM) and nanodrop (ND)-based vessel leakage imaging to achieve simultaneous microvascular imaging and hemorrhage detection. ULM maps brain-wide cerebral vasculature with high spatial resolution and identifies microvascular impairments around hemorrhagic areas. NDs are sub-micron liquid-core particles that can extravasate due to blood-brain barrier breakdown, serving as positive contrast agents to detect hemorrhage sites. RESULTS Our findings demonstrate that NDs could effectively accumulate in the hemorrhagic site and reveal the location of the bleeding areas upon activation by focused ultrasound beams. ULM further reveals the microvascular damage manifested in the form of reduced vascularity and decreased blood flow velocity across areas affected by the hemorrhagic stroke. CONCLUSION The results demonstrate that sequential ULM combined with ND imaging is a useful imaging tool for basic in vivo research in stroke with rodent models where brain-wide detection of active bleeding and microvascular impairment are essential.
Collapse
Affiliation(s)
- Bing-Ze Lin
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Yike Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qi You
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos-Hernández A, Avila-Luna A, García-García K, Gálvez-Rosas A, Hidalgo-Bravo A, Ríos C, Parra-Cid C, Montes S, García-López J, Ramos-Languren LE, Pérez-Severiano F, González-Piña R, Bueno-Nava A. Changes in Noradrenergic Synthesis and Dopamine Beta-Hydroxylase Activity in Response to Oxidative Stress after Iron-induced Brain Injury. Neurochem Res 2024; 49:3043-3059. [PMID: 39105899 DOI: 10.1007/s11064-024-04222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Adriana Olmos-Hernández
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Karla García-García
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Arturo Gálvez-Rosas
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Hidalgo-Bravo
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Camilo Ríos
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, calle 16 y lago de Chapala, Aztlán, Tamaulipas, Mexico
| | - Julieta García-López
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Laura E Ramos-Languren
- Facultad de Psicología, División de Estudios Profesionales, Universidad Nacional Autónoma de Mexico, Av. Universidad 3040, Col, Copilco Universidad Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, Ciudad de México, Mexico
| | - Rigoberto González-Piña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, Mexico
- Clínica de Rehabilitación del Daño Cerebral CLIREDACE "Dr. Hugo Iván González Gutiérrez", Monterrey 243, Col. Roma Sur, Alcaldía Cuauhtémoc, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico.
- Laboratorio de Neurofisiología Química de la Discapacidad, Coordinación de Neurociencias Básica, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Ciudad de México, 14389, Mexico.
| |
Collapse
|
3
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
4
|
de Mendiola JMFP, Arboix A, García-Eroles L, Sánchez-López MJ. Acute Spontaneous Lobar Cerebral Hemorrhages Present a Different Clinical Profile and a More Severe Early Prognosis than Deep Subcortical Intracerebral Hemorrhages-A Hospital-Based Stroke Registry Study. Biomedicines 2023; 11:223. [PMID: 36672731 PMCID: PMC9856131 DOI: 10.3390/biomedicines11010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Acute spontaneous intracerebral hemorrhage (ICH) is the most severe stroke subtype, with a high risk of death, dependence, and dementia. Knowledge about the clinical profile and early outcomes of ICH patients with lobar versus deep subcortical brain topography remains limited. In this study, we investigated the effects of ICH topography on demographics, cerebrovascular risk factors, clinical characteristics, and early outcomes in a sample of 298 consecutive acute ICH patients (165 with lobar and 133 with subcortical hemorrhagic stroke) available in a single-center-based stroke registry over 24 years. The multiple logistic regression analysis shows that variables independently associated with lobar ICH were early seizures (OR 6.81, CI 95% 1.27−5.15), chronic liver disease (OR 4.55, 95% CI 1.03−20.15), hemianopia (OR 2.55, 95% CI 1.26−5.15), headaches (OR 1.90, 95% CI 1.90, 95% IC 1.06−3.41), alcohol abuse (>80 gr/day) (OR 0−10, 95% CI 0.02−0,53), hypertension (OR 0,41, 95% CI 0.23−0−70), sensory deficit (OR 0.43, 95% CI 0.25−0.75), and limb weakness (OR: 0.47, 95% CI 0.24−0.93). The in-hospital mortality was 26.7% for lobar and 16.5% for subcortical ICH. The study confirmed that the clinical spectrum, prognosis, and early mortality of patients with ICH depend on the site of bleeding, with a more severe early prognosis in lobar intracerebral hemorrhage.
Collapse
Affiliation(s)
| | - Adrià Arboix
- Department of Neurology, Hospital Universitari Sagrat Cor, Universitat de Barcelona, 08029 Barcelona, Spain
| | - Luís García-Eroles
- Department of Neurology, Hospital Universitari Sagrat Cor, Universitat de Barcelona, 08029 Barcelona, Spain
| | | |
Collapse
|
5
|
The "SALPARE study" of spontaneous intracerebral haemorrhage-part 2-early CT predictors of outcome in ICH: keeping it simple. Neurol Res Pract 2023; 5:2. [PMID: 36631839 PMCID: PMC9835380 DOI: 10.1186/s42466-022-00228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the prognostic role of hematoma characteristics and hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (ICH). METHODS This multicenter prospective cohort study enrolled consecutive adult patients with non-traumatic ICH admitted to three Italian academic hospitals (Salerno, Padova, Reggio Emilia) over a 2-year period. Early noncontrast CT (NCCT) features of the hematoma, including markers of HE, and 3-month outcome were recorded. Multivariable logistic regression analysis was performed to identify predictors of poor outcome. RESULTS A total of 682 patients were included in the study [mean age: 73 ± 14 years; 316 (46.3%) females]. Pontine and massive hemorrhage, intraventricular bleeding, baseline hematoma volume > 15 mL, blend sign, swirl sign, margin irregularity ≥ 4, density heterogeneity ≥ 3, hypodensity ≥ 1, island sign, satellite sign, and black hole sign were associated with a higher risk of mortality and disability. However, at multivariate analysis only initial hematoma volume (OR 29.71) proved to be an independent predictor of poor functional outcome at 3 months. CONCLUSION Simple hematoma volume measured on baseline CT best identifies patients with a worse outcome, while early NCCT markers of HE do not seem to add any clinically significant information.
Collapse
|
6
|
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R, Shah ZA. Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int 2023; 162:105458. [PMID: 36460240 PMCID: PMC9839659 DOI: 10.1016/j.neuint.2022.105458] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Stroke, a neurological disease, is one of the leading causes of death worldwide, resulting in long-term disability in most survivors. Annual stroke costs in the United States alone were estimated at $46 billion recently. Stroke pathophysiology is complex, involving multiple causal factors, among which atherosclerosis, thrombus, and embolus are prevalent. The molecular mechanisms involved in the pathophysiology are essential to understanding targeted drug development. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress, and neuroinflammation. In addition, various modifiable and non-modifiable risk factors increase the chances of stroke manifolds. Once a patient encounters a stroke, complete restoration of motor ability and cognitive skills is often rare. Therefore, shaping therapeutic strategies is paramount for finding a viable therapeutic agent. Apart from tPA, an FDA-approved therapy that is applied in most stroke cases, many other therapeutic strategies have been met with limited success. Stroke therapies often involve a combination of multiple strategies to restore the patient's normal function. Certain drugs like Gamma-aminobutyric receptor agonists (GABA), Glutamate Receptor inhibitors, Sodium, and Calcium channel blockers, and fibrinogen-depleting agents have shown promise in stroke treatment. Recently, a drug, DM199, a recombinant (synthetic) form of a naturally occurring protein called human tissue kallikrein-1 (KLK1), has shown great potential in treating stroke with fewer side effects. Furthermore, DM199 has been found to overcome the limitations presented when using tPA and/or mechanical thrombectomy. Cell-based therapies like Neural Stem Cells, Hematopoietic stem cells (HSCs), and Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) are also being explored as a treatment of choice for stroke. These therapeutic agents come with merits and demerits, but continuous research and efforts are being made to develop the best therapeutic strategies to minimize the damage post-stroke and restore complete neurological function in stroke patients.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Briana Maktabi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zainab A Rahman
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ahmed Naqvi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|
7
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Zhang R, Yong VW, Xue M. Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Front Immunol 2022; 13:844163. [PMID: 35401553 PMCID: PMC8993500 DOI: 10.3389/fimmu.2022.844163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 01/31/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory prognosis of high mortality and disability. Although many pre-clinical studies and clinical trials have been performed in the past decades, effective therapy that meaningfully improve prognosis and outcomes of ICH patients is still lacking. An active area of research is towards alleviating secondary brain injury after ICH through neuroprotective pharmaceuticals and in which minocycline is a promising candidate. Here, we will first discuss new insights into the protective mechanisms of minocycline for ICH including reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different types of cell death from preclinical data, then consider its shortcomings. Finally, we will review clinical trial perspectives for minocycline in ICH. We hope that this summary and discussion about updated information on minocycline as a viable treatment for ICH can facilitate further investigations.
Collapse
Affiliation(s)
- Ruiyi Zhang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Li Z, Liu Y, Wei R, Khan S, Xue M, Yong VW. The combination of deferoxamine and minocycline strengthens neuroprotective effect on acute intracerebral hemorrhage in rats. Neurol Res 2021; 43:854-864. [PMID: 34107863 DOI: 10.1080/01616412.2021.1939487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: Intracerebral hemorrhage (ICH) is a devastating type of strokes that carries high mortality rates, but effective therapeutic options are still lacking. Here, the adult rat model of ICH was used to investigate the efficacy of a combinational therapy of deferoxamine (DFX) and minocycline.Methods: The ICH was induced by stereotaxic infusion of collagenase into striatum of adult rats. After the induction of ICH, rats were treated with intraperitoneal injection of deferoxamine (50 mg/kg), minocycline (45 mg/kg), or both agents, at 2 hours after ICH and then every 12 hours for up to 3 days. The vehicle group were treated with phosphate-buffered saline (PBS) only. Rats were killed at 1, 2, and 3 day(s) for examination of iron deposition, neuronal death, neurological deficits, the area of brain damage, activation of microglia/macrophages.Results: Our data revealed that the systemic administration of DFX and/or minocycline decreased iron accumulation. And immunofluorescence staining results indicated that drug-treated group significantly decreased the neuronal degeneration, the number of activated microglia/macrophages and the amount of cell death after ICH. In addition, neurological deficits caused by ICH were improved in the presence of DFX and/or minocycline compare with vehicle group. Furthermore, the combination treatment showed better effects in neuroprotection and anti-inflammation when compared to the monotherapy groups.Conclusions: The combination therapy significantly reduces the number of neuronal deaths, suppresses of the activation of microglia/macrophages, decreases iron accumulation in the area around the hematoma, lessening the brain damage area, and improving neurological deficits in ICH.
Collapse
Affiliation(s)
- Zhe Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury and Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury and Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Ruixue Wei
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury and Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury and Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury and Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AL, Canada
| |
Collapse
|