1
|
Mehri M, Sharifi H, Mann CK, Rockward AL, Campbell KS, Lee LC, Wenk JF. Multiscale fiber remodeling in the infarcted left ventricle using a stress-based reorientation law. Acta Biomater 2024:S1742-7061(24)00575-0. [PMID: 39362453 DOI: 10.1016/j.actbio.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV). This is achieved by implementing a stress-based fiber reorientation law, which seeks to align the fibers with local traction vectors, such that contractile force and load bearing capabilities are maximized. By utilizing the total stress (passive and active), both myofibers and collagen fibers are reoriented. Simulations are conducted to predict the baseline fiber configuration in a normal LV as well as the adverse fiber reorientation that occurs due to different size MIs. The baseline model successfully captures the transmural variation of helical fiber angles within the LV wall, as well as the transverse fiber angle variation from base to apex. In the models of MI, the patterns of fiber reorientation in the infarct, border zone, and remote regions closely align with previous experimental findings, with a significant increase in fibers oriented in a left-handed helical configuration and increased dispersion in the infarct region. Furthermore, the severity of fiber reorientation and impairment of pumping performance both showed a correlation with the size of the infarct. The proposed multiscale modeling framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future. STATEMENT OF SIGNIFICANCE: The organization of muscle and collagen fibers within the heart plays a significant role in defining cardiac function. This organization can become disrupted after a heart attack, leading to degraded pumping performance. In the current study, we implemented a stress-based fiber reorientation law into a computer model of the heart, which seeks to realign the fibers such that contractile force and load bearing capabilities are maximized. The primary goal was to evaluate the effects of different sized heart attacks. We observed substantial fiber remodeling in the heart, which matched experimental observations. The proposed computational framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future.
Collapse
Affiliation(s)
- Mohammad Mehri
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Hossein Sharifi
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Charles K Mann
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Alexus L Rockward
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Jonathan F Wenk
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Cabanis P, Magat J, Rodriguez-Padilla J, Ramlugun G, Yon M, Bihan-Poudec Y, Pallares-Lupon N, Vaillant F, Pasdois P, Jais P, Dos-Santos P, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Haissaguerre M, Bernus O, Quesson B, Walton R, Duchateau J, Vigmond E, Ozenne V. Cardiac structure discontinuities revealed by ex-vivo microstructural characterization. A focus on the basal inferoseptal left ventricle region. J Cardiovasc Magn Reson 2023; 25:78. [PMID: 38093273 PMCID: PMC10720182 DOI: 10.1186/s12968-023-00989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.
Collapse
Affiliation(s)
- Pierre Cabanis
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France.
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France.
| | - Julie Magat
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| | | | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Maxime Yon
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS, Université Claude Bernard Lyon I, Villeurbanne, France
| | - Nestor Pallares-Lupon
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Philippe Pasdois
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Pierre Jais
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Pierre Dos-Santos
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Julien Rogier
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Louis Labrousse
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Michel Haissaguerre
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Bruno Quesson
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| | - Richard Walton
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Josselin Duchateau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Cardiology Department, Bordeaux University Hospital (CHU), Pessac, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- CNRS, IMB, UMR5251, Talence, France
| | - Valéry Ozenne
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, 2 Rue Dr Hoffmann Martinot, 33000, Bordeaux, France
| |
Collapse
|
3
|
Alemany I, Rose JN, Ferreira PF, Pennell DJ, Nielles‐Vallespin S, Scott AD, Doorly DJ. Realistic numerical simulations of diffusion tensor cardiovascular magnetic resonance: The effects of perfusion and membrane permeability. Magn Reson Med 2023; 90:1641-1656. [PMID: 37415339 PMCID: PMC10952789 DOI: 10.1002/mrm.29737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To study the sensitivity of diffusion tensor cardiovascular magnetic resonance (DT-CMR) to microvascular perfusion and changes in cell permeability. METHODS Monte Carlo (MC) random walk simulations in the myocardium have been performed to simulate self-diffusion of water molecules in histology-based media with varying extracellular volume fraction (ECV) and permeable membranes. The effect of microvascular perfusion on simulations of the DT-CMR signal has been incorporated by adding the contribution of particles traveling through an anisotropic capillary network to the diffusion signal. The simulations have been performed considering three pulse sequences with clinical gradient strengths: monopolar stimulated echo acquisition mode (STEAM), monopolar pulsed-gradient spin echo (PGSE), and second-order motion-compensated spin echo (MCSE). RESULTS Reducing ECV intensifies the diffusion restriction and incorporating membrane permeability reduces the anisotropy of the diffusion tensor. Widening the intercapillary velocity distribution results in increased measured diffusion along the cardiomyocytes long axis when the capillary networks are anisotropic. Perfusion amplifies the mean diffusivity for STEAM while the opposite is observed for short diffusion encoding time sequences (PGSE and MCSE). CONCLUSION The effect of perfusion on the measured diffusion tensor is reduced using an increased reference b-value. Our results pave the way for characterization of the response of DT-CMR to microstructural changes underlying cardiac pathology and highlight the higher sensitivity of STEAM to permeability and microvascular circulation due to its longer diffusion encoding time.
Collapse
Affiliation(s)
- Ignasi Alemany
- Department of AeronauticsImperial College LondonLondonUK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial College LondonLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
4
|
Schreiber LM, Lohr D, Baltes S, Vogel U, Elabyad IA, Bille M, Reiter T, Kosmala A, Gassenmaier T, Stefanescu MR, Kollmann A, Aures J, Schnitter F, Pali M, Ueda Y, Williams T, Christa M, Hofmann U, Bauer W, Gerull B, Zernecke A, Ergün S, Terekhov M. Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research. Front Cardiovasc Med 2023; 10:1068390. [PMID: 37255709 PMCID: PMC10225557 DOI: 10.3389/fcvm.2023.1068390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/04/2023] [Indexed: 06/01/2023] Open
Abstract
A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.
Collapse
Affiliation(s)
- Laura M. Schreiber
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - David Lohr
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Steffen Baltes
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ibrahim A. Elabyad
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maya Bille
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Theresa Reiter
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Aleksander Kosmala
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Tobias Gassenmaier
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria R. Stefanescu
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alena Kollmann
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Aures
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Florian Schnitter
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mihaela Pali
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Yuichiro Ueda
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Tatiana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin Christa
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I/Cardiology, University Hospital Wuerzburg, Wuerzburg, Germany
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center Wuerzburg, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University, Wuerzburg, Germany
| | - Maxim Terekhov
- Department of Cardiovascular Imaging and Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Mendiola EA, da Silva Gonçalves Bos D, Leichter DM, Vang A, Zhang P, Leary OP, Gilbert RJ, Avazmohammadi R, Choudhary G. Right Ventricular Architectural Remodeling and Functional Adaptation in Pulmonary Hypertension. Circ Heart Fail 2023; 16:e009768. [PMID: 36748476 PMCID: PMC9974595 DOI: 10.1161/circheartfailure.122.009768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Global indices of right ventricle (RV) function provide limited insights into mechanisms underlying RV remodeling in pulmonary hypertension (PH). While RV myocardial architectural remodeling has been observed in PH, its effect on RV adaptation is poorly understood. METHODS Hemodynamic assessments were performed in 2 rodent models of PH. RV free wall myoarchitecture was quantified using generalized Q-space imaging and tractography analyses. Computational models were developed to predict RV wall strains. Data from animal studies were analyzed to determine the correlations between hemodynamic measurements, RV strains, and structural measures. RESULTS In contrast to the PH rats with severe RV maladaptation, PH rats with mild RV maladaptation showed a decrease in helical range of fiber orientation in the RV free wall (139º versus 97º; P=0.029), preserved global circumferential strain, and exhibited less reduction in right ventricular-pulmonary arterial coupling (0.029 versus 0.017 mm/mm Hg; P=0.037). Helical range correlated positively with coupling (P=0.036) and stroke volume index (P<0.01). Coupling correlated with global circumferential strain (P<0.01) and global radial strain (P<0.01) but not global longitudinal strain. CONCLUSIONS Data analysis suggests that adaptive RV architectural remodeling could improve RV function in PH. Our findings suggest the need to assess RV architecture within routine screenings of PH patients to improve our understanding of its prognostic and therapeutic significance in PH.
Collapse
Affiliation(s)
- Emilio A. Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Denielli da Silva Gonçalves Bos
- Pulmonary Division–Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
- Ocean State Research Institute, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Ocean State Research Institute, Providence, Rhode Island, USA
| | - Owen P. Leary
- Ocean State Research Institute, Providence, Rhode Island, USA
| | | | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, 77030, USA
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Ocean State Research Institute, Providence, Rhode Island, USA
| |
Collapse
|
6
|
The Myosin Myocardial Mesh Interpreted as a Biological Analogous of Nematic Chiral Liquid Crystals. J Cardiovasc Dev Dis 2021; 8:jcdd8120179. [PMID: 34940534 PMCID: PMC8708414 DOI: 10.3390/jcdd8120179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022] Open
Abstract
There are still grey areas in the understanding of the myoarchitecture of the ventricular mass. This is despite the progress of investigation methods since the beginning of the 21st century (diffusion tensor magnetic resonance imaging, microcomputed tomography, and polarised light imaging). The objective of this article is to highlight the specificities and the limitations of polarised light imaging (PLI) of the unstained myocardium embedded in methyl methacrylate (MMA). Thus, to better differentiate our method from other PLI modes, we will refer to it by the acronym PLI-MMA. PLI-MMA shows that the myosin mesh of the compact left ventricular wall behaves like a biological analogous of a nematic chiral liquid crystal. Results obtained by PLI-MMA are: the main direction of the myosin molecules contained in an imaged voxel, the crystal liquid director n, and a regional isotropy index RI that is an orientation tensor, the equivalent of the crystal liquid order parameter. The vector n is collinear with the first eigenvector of diffusion tensor imaging (DTI-MRI). The RI has not been confounded with the diffusion tensor of DTI that gives information about the three eigenvectors of the ellipsoid of diffusion. PLI-MMA gives no information about the collagen network. The physics of soft matter has allowed the revisiting of Streeter’s conjecture on the myoarchitecture of the compact left ventricular wall: “geodesics on a nested set of toroidal surfaces”. Once the torus topology is understood, this characterisation of the myoarchitecture is more accurate and parsimonious than former descriptions. Finally, this article aims to be an enthusiastic invitation to a transdisciplinary approach between physicists of liquid crystals, anatomists, and specialists of imaging.
Collapse
|