1
|
Pogozhykh D, Yilmaz Karapinar D, Klimiankou M, Gerschmann N, Ebetsberger-Dachs G, Palmblad J, Carlsson G, Masmas T, Kinsey S, Bartels M, Mellor-Heineke S, Welte K, Skokowa J, Zeidler C. HAX1-related congenital neutropenia: Long-term observation in paediatric and adult patients enrolled in the European branch of the Severe Chronic Neutropenia International Registry (SCNIR). Br J Haematol 2023. [PMID: 37193639 DOI: 10.1111/bjh.18840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Maksim Klimiankou
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Natali Gerschmann
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Kepler University Hospital, Linz, Austria
| | - Jan Palmblad
- Departments of Medicine and Hematology, The Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Carlsson
- Childhood Cancer Research Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tania Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Kinsey
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Marije Bartels
- Department of Paediatric Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sabine Mellor-Heineke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Zeidler
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Mendez LM, Patnaik MM. Clonal Hematopoiesis: Origins and determinants of evolution. Leuk Res 2023; 129:107076. [PMID: 37075557 DOI: 10.1016/j.leukres.2023.107076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The accrual of somatic mutations is a byproduct of aging. When a clone bearing a somatic genetic alteration, conferring comparative competitive advantage, displays sufficient outgrowth to become detectable amongst an otherwise polyclonal background in the hematopoietic system, this is called clonal hematopoiesis (CH). Somatic genetic alterations observed in CH include point mutations in cancer related genes, mosaic chromosomal alterations or a combination of these. Interestingly, clonal hematopoiesis (CH) can also occur with somatic variants in genes without a known role in cancer and in the absence of a somatic genetic alteration through a process that has been described as 'genetic drift'. Clonal hematopoiesis of indeterminate significance (CHIP), is age-related and defined by the presence of somatic point mutations in cancer related genes, in the absence of cytopenias or a diagnosis of hematologic neoplasm, with a variant allele fraction ≥ 2 %. Remarkably, the increased mortality associated with CHIP is largely due to cardiovascular disease. Subsequently, CHIP has been associated with a myriad of age-related conditions such as Alzheimer's Disease, osteoporosis, CVA and COPD. CHIP is associated with an increased risk of hematologic malignancies, particularly myeloid neoplasms, with the risk rising with increasing clone size and clonal complexity. Mechanisms regulating clonal evolution and progression to hematologic malignancies remain to be defined. However, observations on context specific CH arising in the setting of bone marrow failure states, or on exposure to chemotherapy and radiation therapy, suggest that CH reflects context specific selection pressures and constraint-escape mechanisms.
Collapse
Affiliation(s)
- Lourdes M Mendez
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, MN, USA.
| |
Collapse
|
3
|
Skokowa J, Hernandez Alvarez B, Coles M, Ritter M, Nasri M, Haaf J, Aghaallaei N, Xu Y, Mir P, Krahl AC, Rogers KW, Maksymenko K, Bajoghli B, Welte K, Lupas AN, Müller P, ElGamacy M. A topological refactoring design strategy yields highly stable granulopoietic proteins. Nat Commun 2022; 13:2948. [PMID: 35618709 PMCID: PMC9135769 DOI: 10.1038/s41467-022-30157-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets. Skokowa et al. reconstruct the fold of a granulopoietic cytokine, resulting in de novo, hyperstable, highly active proteins with therapeutic potential for treating several neutropenia disorders.
Collapse
Affiliation(s)
- Julia Skokowa
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany.
| | | | - Murray Coles
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Malte Ritter
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Masoud Nasri
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Jérémy Haaf
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yun Xu
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Perihan Mir
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Ann-Christin Krahl
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, 72076, Tübingen, Germany.,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany
| | - Baubak Bajoghli
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Karl Welte
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany.,Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Mohammad ElGamacy
- Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076, Tübingen, Germany. .,Friedrich Miescher Laboratory of the Max Planck Society, 72076, Tübingen, Germany. .,Heliopolis Biotechnology Ltd, Cambridge, CB24 9RX, UK. .,Max Planck Institute for Biology, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Doll L, Aghaallaei N, Dick AM, Welte K, Skokowa J, Bajoghli B. A zebrafish model for HAX1-associated congenital neutropenia. Haematologica 2021; 106:1311-1320. [PMID: 32327498 PMCID: PMC8094079 DOI: 10.3324/haematol.2019.240200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Severe congenital neutropenia is a rare heterogeneous group of diseases, characterized by an arrest of granulocyte maturation. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated congenital neutropenia. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we found that interference with Hax1 function decreases the expression level of key target genes of the granulocyte colony-stimulating factor signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by granulocyte colony-stimulating factor, which is also the main therapeutic intervention for patients who have congenital neutropenia. Our results demonstrate that the zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for patients with congenital neutropenia, particularly for those individuals who do not respond to granulocyte colony-stimulating factor treatment.
Collapse
Affiliation(s)
- Larissa Doll
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Narges Aghaallaei
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Advaita M Dick
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Karl Welte
- University Children Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Baubak Bajoghli
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| |
Collapse
|
5
|
Nasri M, Ritter M, Mir P, Dannenmann B, Aghaallaei N, Amend D, Makaryan V, Xu Y, Fletcher B, Bernhard R, Steiert I, Hahnel K, Berger J, Koch I, Sailer B, Hipp K, Zeidler C, Klimiankou M, Bajoghli B, Dale DC, Welte K, Skokowa J. CRISPR/Cas9-mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients. Haematologica 2019; 105:598-609. [PMID: 31248972 PMCID: PMC7049355 DOI: 10.3324/haematol.2019.221804] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/21/2019] [Indexed: 11/09/2022] Open
Abstract
A Autosomal-dominant ELANE mutations are the most common cause of severe congenital neutropenia. Although the majority of congenital neutropenia patients respond to daily granulocyte colony stimulating factor, approximately 15 % do not respond to this cytokine at doses up to 50 μg/kg/day and approximately 15 % of patients will develop myelodysplasia or acute myeloid leukemia. “Maturation arrest,” the failure of the marrow myeloid progenitors to form mature neutrophils, is a consistent feature of ELANE associated congenital neutropenia. As mutant neutrophil elastase is the cause of this abnormality, we hypothesized that ELANE associated neutropenia could be treated and “maturation arrest” corrected by a CRISPR/Cas9-sgRNA ribonucleoprotein mediated ELANE knockout. To examine this hypothesis, we used induced pluripotent stem cells from two congenital neutropenia patients and primary hematopoietic stem and progenitor cells from four congenital neutropenia patients harboring ELANE mutations as well as HL60 cells expressing mutant ELANE. We observed that granulocytic differentiation of ELANE knockout induced pluripotent stem cells and primary hematopoietic stem and progenitor cells were comparable to healthy individuals. Phagocytic functions, ROS production, and chemotaxis of the ELANE KO (knockout) neutrophils were also normal. Knockdown of ELANE in the mutant ELANE expressing HL60 cells also allowed full maturation and formation of abundant neutrophils. These observations suggest that ex vivo CRISPR/Cas9 RNP based ELANE knockout of patients’ primary hematopoietic stem and progenitor cells followed by autologous transplantation may be an alternative therapy for congenital neutropenia.
Collapse
Affiliation(s)
- Masoud Nasri
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Malte Ritter
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Perihan Mir
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Narges Aghaallaei
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Diana Amend
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yun Xu
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Breanna Fletcher
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Regine Bernhard
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Ingeborg Steiert
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Karin Hahnel
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Iris Koch
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Brigitte Sailer
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Hipp
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Baubak Bajoghli
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Welte
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany.,University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology and Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Walkovich K, Connelly JA. Congenital Neutropenia and Rare Functional Phagocyte Disorders in Children. Hematol Oncol Clin North Am 2019; 33:533-551. [PMID: 31030818 DOI: 10.1016/j.hoc.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both profound neutropenia and functional phagocyte disorders render patients susceptible to recurrent, unusual, and/or life-threatening infections. Many disorders also have nonhematologic manifestations and a substantial risk of leukemogenesis. Diagnosis relies on clinical suspicion and interrogation of the complete blood count with differential/bone marrow examination coupled with immunologic and genetic analyses. Treatment of the quantitative neutrophil disorders depends on granulocyte colony-stimulating factor, whereas management of functional phagocyte disease is reliant on antimicrobials and/or targeted therapies. Hematopoietic stem cell transplant remains the only curative option for most disorders but is not used on a routine basis.
Collapse
Affiliation(s)
- Kelly Walkovich
- Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Drive, D4202 Medical Professional Building, SPC 5718, Ann Arbor, MI 48109-5718, USA.
| | - James A Connelly
- Pediatric Hematopoietic Stem Cell Transplant, Department of Pediatrics, Vanderbilt University Medical Center, 2220 Pierce Avenue, 397 PRB, Nashville, TN 37232-6310, USA
| |
Collapse
|
7
|
Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation. Exp Hematol 2019; 71:51-60. [DOI: 10.1016/j.exphem.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 11/24/2022]
|
8
|
Klimiankou M, Uenalan M, Kandabarau S, Nustede R, Steiert I, Mellor-Heineke S, Zeidler C, Skokowa J, Welte K. Ultra-Sensitive CSF3R Deep Sequencing in Patients With Severe Congenital Neutropenia. Front Immunol 2019; 10:116. [PMID: 30891028 PMCID: PMC6413711 DOI: 10.3389/fimmu.2019.00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
High frequency of acquired CSF3R (colony stimulating factor 3 receptor, granulocyte) mutations has been described in patients with severe congenital neutropenia (CN) at pre-leukemia stage and overt acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Here, we report the establishment of an ultra-sensitive deep sequencing of a CSF3R segment encoding the intracellular “critical region” of the G-CSFR known to be mutated in CN-MDS/AML patients. Using this method, we achieved a mutant allele frequency (MAF) detection rate of 0.01%. We detected CSF3R mutations in CN patients with different genetic backgrounds, but not in patients with other types of bone marrow failure syndromes chronically treated with G-CSF (e.g., Shwachman-Diamond Syndrome). Comparison of CSF3R deep sequencing results of DNA and cDNA from the bone marrow and peripheral blood cells revealed the highest sensitivity of cDNA from the peripheral blood polymorphonuclear neutrophils. This approach enables the identification of low-frequency CSF3R mutant clones, increases sensitivity, and earlier detection of CSF3R mutations acquired during the course of leukemogenic evolution of pre-leukemia HSCs of CN patients. We suggest application of sequencing of the entire CSF3R gene at diagnosis to identify patients with inherited lost-of-function CSF3R mutations and annual ultra-deep sequencing of the critical region of CSF3R to monitor acquisition of CSF3R mutations.
Collapse
Affiliation(s)
- Maksim Klimiankou
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Murat Uenalan
- Department of Molecular Hematopoiesis, Hannover Medical School, Hannover, Germany
| | - Siarhei Kandabarau
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Ingeborg Steiert
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Sabine Mellor-Heineke
- Department of Hematology, Oncology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Cornelia Zeidler
- Department of Hematology, Oncology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Immunology, Rheumatology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L. Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:112-118. [PMID: 28238879 DOI: 10.1016/j.dci.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Infections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X. laevis granulocyte colony-stimulating factor (G-CSF) generates PMNs with hallmark granulocyte morphology. Tadpole pretreatment with G-CSF prior to FV3 infection reduces animal kidney FV3 loads and extends their survival. Moreover, G-CSF-derived PMNs are resistant to FV3 infection and express high levels of TNFα in response to this virus. Notably, FV3-infected tadpoles fail to recruit G-CSFR expressing granulocytes into their kidneys, suggesting that they lack an integral inflammatory effector population at this site.
Collapse
Affiliation(s)
- Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jonathan R Ghaul
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
10
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|
11
|
Karapınar TH, Yılmaz Karapinar D, Oymak Y, Ay Y, Demirağ B, Aykut A, Onay H, Hazan F, Aydınok Y, Özkınay F, Vergin C. HAX1 mutation positive children presenting with haemophagocytic lymphohistiocytosis. Br J Haematol 2017; 177:597-600. [PMID: 28169428 DOI: 10.1111/bjh.14574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022]
Abstract
The genetic basis of haemophagocytic lymphohistiocytosis (HLH) has not been elucidated in 10% of affected patients. In this study, we report four HLH episodes in three patients with HAX1 gene mutations. We screened the mutations associated with congenital neutropenia (CN) because the neutropenia persisted following HLH treatment. There were homozygous HAX1 mutations detected in all patients. This is the first case series of patients with CN caused by HAX1 mutation who presented with HLH. We hypothesize that severe neutropenia persists after an HLH episode in children without HLH mutations (especially infants) because these patients have CN caused by HAX1 mutations.
Collapse
Affiliation(s)
- Tuba H Karapınar
- Department of Paediatric Haematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Deniz Yılmaz Karapinar
- Department of Paediatric Haematology-Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Yeşim Oymak
- Department of Paediatric Haematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Yılmaz Ay
- Department of Paediatric Haematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Bengü Demirağ
- Department of Paediatric Haematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Ayça Aykut
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Filiz Hazan
- Department of Medical Genetics, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| | - Yeşim Aydınok
- Department of Paediatric Haematology-Oncology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ferda Özkınay
- Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey
| | - Canan Vergin
- Department of Paediatric Haematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, Izmir, Turkey
| |
Collapse
|
12
|
Koch C, Samareh B, Morishima T, Mir P, Kanz L, Zeidler C, Skokowa J, Welte K. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling. Ann Hematol 2016; 96:345-353. [DOI: 10.1007/s00277-016-2894-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023]
|
13
|
Yaparla A, Wendel ES, Grayfer L. The unique myelopoiesis strategy of the amphibian Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:136-143. [PMID: 27234705 DOI: 10.1016/j.dci.2016.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs' liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, Wellendorf AM, Valencia CA, Paddison PJ, Horwitz MS, Grimes HL, Lutzko C, Cancelas JA. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest 2015; 125:3103-16. [PMID: 26193632 DOI: 10.1172/jci80924] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/05/2015] [Indexed: 12/27/2022] Open
Abstract
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
Collapse
|
15
|
Lachmann N, Happle C, Ackermann M, Lüttge D, Wetzke M, Merkert S, Hetzel M, Kensah G, Jara-Avaca M, Mucci A, Skuljec J, Dittrich AM, Pfaff N, Brennig S, Schambach A, Steinemann D, Göhring G, Cantz T, Martin U, Schwerk N, Hansen G, Moritz T. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2014; 189:167-82. [PMID: 24279725 DOI: 10.1164/rccm.201306-1012oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.
Collapse
Affiliation(s)
- Nico Lachmann
- 1 Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|