1
|
Caka C, Ergenoğlu DN, Sinanoğlu N, Maslak IC, Bildik HN, Çiçek B, Esenboga S, Tezcan I, Cagdas D. A large cohort from an immunology reference center and an algorithm for the follow-up of chronic neutropenia. J Clin Immunol 2024; 45:38. [PMID: 39499404 DOI: 10.1007/s10875-024-01816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Chronic neutropenia causes involve nutritional deficiencies and inborn errors of immunity(IEI), such as severe congenital neutropenia. To classify common chronic neutropenia causes in a pediatric immunology unit. We enrolled 109 chronic neutropenia patients admitted to a pediatric immunology department between 2002-2022. We recorded clinical/laboratory features and genetic characteristics. The male/female ratio was 63/46. Fifty-eight patients had parental consanguinity(57.4%). 26.6% (n = 29) patients had at least one individual in their family with neutropenia. Common symtpoms at presentation were upper respiratory tract infections(URTI)(31.1%), oral aphthae(23.6%), skin infections(23.6%), pneumonia(20.8%), and recurrent abscesses(12.3%). Common infections during follow-up were URTI(56.8%), pneumonia(33%), skin infections(25.6%), gastroenteritis(18.3%), and recurrent abscesses(14,6%). Common long-term complications were dental problems(n = 51), osteoporosis(n = 22), growth retardation(n = 14), malignancy(n = 16)[myelodysplastic syndrome(n = 10), large granulocytic leukemia(n = 1), acute lymphoblastic leukemia(n = 1), Hodgkin lymphoma(n = 1), EBV-related lymphoma(n = 1), leiomyosarcoma(n = 1), and thyroid neoplasm(n = 1)]. We performed a genetic study in 86 patients, and 69(71%) got a genetic diagnosis. Common gene defects were HAX-1(n = 26), ELA-2 (ELANE)(n = 10), AP3B1(n = 4), and ADA-2(n = 4) gene defects. The IEI ratio(70.6%) was high. GCSF treatment(93.4%), immunoglobulin replacement therapy(18.7%), and HSCT(15.9%) were the treatment options. The mortality rate was 12.9%(n = 14). The most common long term complications were dental problems that is three times more common in patients with known genetic mutations. We prepared an algorithm for chronic neutropenia depending on the present cohort. An important rate of inborn errors of immunity, especially combined immunodeficiency(11.9%) was presented in addition to congenital phagocytic cell defects. Early diagnosis will allow us tailor the disease-specific treatment options sooner, preventing irreversible consequences.
Collapse
Affiliation(s)
- Canan Caka
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Nidanur Sinanoğlu
- Faculty of Medicine, Medical Student, Hacettepe University, Ankara, Turkey
| | - Ibrahim Cemal Maslak
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics Suleyman Demirel Univercity Faculty of Medicine, Isparta, Turkey
| | - Hacer Neslihan Bildik
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Begüm Çiçek
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Deniz Cagdas
- Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, Division of Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Jafarzadeh A, Motaghi M, Patra SK, Jafarzadeh Z, Nemati M, Saha B. Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications. Cytotherapy 2024; 26:797-805. [PMID: 38625068 DOI: 10.1016/j.jcyt.2024.03.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marzieh Motaghi
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
3
|
Núñez-Núñez ME, Lona-Reyes JC, López-Barragán B, Cruz-Osorio RM, Gutiérrez-Zepeda BM, Quintero-Ramos A, Becerra-Loaiza DS. Case Report: Characterization of known (c.607G>C) and novel (c.416C>G) ELANE mutations in two Mexican families with congenital neutropenia. Front Immunol 2023; 14:1194262. [PMID: 37795094 PMCID: PMC10547563 DOI: 10.3389/fimmu.2023.1194262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The most common causes of congenital neutropenia are mutations in the ELANE (Elastase, Neutrophil Expressed) gene (19p13.3), mostly in exon 5 and the distal portion of exon 4, which result in different clinical phenotypes of neutropenia. Here, we report two pathogenic mutations in ELANE, namely, c.607G>C (p.Gly203Arg) and a novel variant c.416C>G (p.Pro139Arg), found in two Mexican families ascertained via patients with congenital neutropenia who responded positively to the granulocyte colony-stimulating factor (G-CSF) treatment. These findings highlight the usefulness of identifying variants in patients with inborn errors of immunity for early clinical management and the need to rule out mosaicism in noncarrier parents with more than one case in the family.
Collapse
Affiliation(s)
- María Enriqueta Núñez-Núñez
- Departamento de Alergia e Inmunología Clínica Pediátrica, Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
| | - Juan Carlos Lona-Reyes
- Departamento de Infectología, Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
- Clínicas de Pediatría, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Brenda López-Barragán
- Departamento de Pediatría, Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
| | - Rosa Margarita Cruz-Osorio
- Clínicas de Pediatría, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Hemato-Oncología Pediátrica, Nuevo Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Mexico
| | - Bricia Melissa Gutiérrez-Zepeda
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Antonio Quintero-Ramos
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Investigación Biomédica 02, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Denisse Stephania Becerra-Loaiza
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
4
|
Abstract
Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Association of ITPA gene polymorphisms with adverse effects of AZA/6-MP administration: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2022; 22:39-54. [PMID: 35034963 DOI: 10.1038/s41397-021-00255-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Azathioprine (AZA) and its metabolite, mercaptopurine (6-MP), are widely used immunosuppressant drugs. Polymorphisms in genes implicated in AZA/6-MP metabolism, reportedly, could account in part for their potential toxicity. In the present study we performed a systematic review and a meta-analysis, comprising 30 studies and 3582 individuals, to investigate the putative genetic association of two inosine triphosphatase (ITPA) polymorphisms with adverse effects in patients treated with AZA/6-MP. We found that rs1127354 is associated with neutropenia in general populations and in children (OR: 2.39, 95%CI: 1.97-2.90, and OR: 2.43, 95%CI: 2.12-2.79, respectively), and with all adverse effects tested herein in adult populations (OR: 2.12, 95%CI: 1.22-3.69). We also found that rs7270101 is associated with neutropenia and leucopenia in all-ages populations (OR: 2.93, 95%CI: 2.36-3.63, and OR: 2.82, 95%CI: 1.76-4.50, respectively) and with all adverse effects tested herein in children (OR: 1.74, 95%CI: 1.06-2.87). Stratification according to background disease, in combination with multiple comparisons corrections, verified neutropenia to be associated with both polymorphisms, in acute lymphoblastic leukemia (ALL) patients. These findings suggest that ITPA polymorphisms could be used as predictive biomarkers for adverse effects of thiopurine drugs to eliminate intolerance in ALL patients and clarify dosing in patients with different ITPA variants.
Collapse
|
6
|
Abstract
Leukocytes, or white blood cells, are part of the innate immune system that defends against infectious and foreign agents. In pediatrics, it is important to use age-specific laboratory values when interpreting results. Infections are the most common cause of leukocytosis or leukopenia in children. Symptoms suggestive of more serious etiologies include persistent fevers, weight loss, bruising, fatigue, and adenopathy. Neutropenia is of special importance in pediatrics due to associations of severe neutropenia with genetic syndromes and overlapping presentations with primary immunodeficiencies. Although the discovery of novel genetic mutations has aided the hematologist/oncologist and the immunologist in managing these conditions, the relationship between clinical phenotype and mutation is still not well known. [Pediatr Ann. 2020;49(1):e17-e26.].
Collapse
|