1
|
Fu C, Liu X, Wang L, Hang D. The Potential of Metabolomics in Colorectal Cancer Prognosis. Metabolites 2024; 14:708. [PMID: 39728489 DOI: 10.3390/metabo14120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, posing a serious threat to human health. Metabolic reprogramming represents a critical feature in the process of tumor development and progression, encompassing alterations in sugar metabolism, lipid metabolism, amino acid metabolism, and other pathways. Metabolites hold promise as innovative prognostic biomarkers for cancer patients, which is crucial for targeted follow-up care and interventions. This review aims to provide an overview of the progress in research on metabolic biomarkers for predicting the prognosis of CRC. We also discuss the future trends and challenges in this area.
Collapse
Affiliation(s)
- Chengqu Fu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Liu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative, Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
2
|
Błażewicz A, Wojnicka J, Grabrucker AM, Sosnowski P, Trzpil A, Kozub-Pędrak A, Szałaj K, Szmagara A, Grywalska E, Skórzyńska-Dziduszko K. Preliminary investigations of plasma lipidome and selenium levels in adults with treated hypothyroidism and in healthy individuals without selenium deficiency. Sci Rep 2024; 14:29140. [PMID: 39587337 PMCID: PMC11589578 DOI: 10.1038/s41598-024-80862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024] Open
Abstract
The present preliminary study aimed to provide a targeted lipidomic analysis of Hashimoto (HT) and non-HT patients with well-controlled hypothyroidism as well as in healthy adults, and is the first to demonstrate the association of several components of the human lipidome with hypothyroidism in relation to the total plasma selenium content. All the patients and age-, sex-, and BMI-matched healthy controls met the very strict qualification criteria. Se levels were analyzed by ICP-MS, and lipidome studies were conducted using TQ-LC/MS. The 40 acylcarnitines, 90 glycerophospholipids, and 15 sphingomyelins were identified and quantified. PCaaC26:0 and PCaaC40:1 were negatively correlated with Se concentrations. Other lipids that were negatively correlated with Se concentrations but did not present significant differences between the three groups in the Kruskal-Wallis ANOVA test were PCaaC32:0, PCaeC30:0, PCaeC36:5, SMC18:0, and SM C18:1. In the multiple linear regression analyses, Se levels showed negative relationship, whereas different phosphatidylcholines: PCaaC24:0, PCaaC26:0, PCaeC30:1, PCaeC34:0, PCaeC36:4, PCaeC42:0 were positively associated with the presence of (H). Different lipidome components were identified in healthy and hypothyroid patients regardless of the cause of that condition. Studies on larger populations are needed to determine cause-and-effect relations and the potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland.
- Department of Biological Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, V94 T9PX, Ireland
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, V94 T9PX, Ireland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Kozub-Pędrak
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agnieszka Szmagara
- Faculty of Medicine, Institute of Biological Sciences, Department of Chemistry, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708, Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093, Lublin, Poland
| | | |
Collapse
|
3
|
Mima K, Hayashi H, Maruno M, Yumoto S, Matsumoto T, Tsukamoto M, Miyata T, Nakagawa S, Nitta H, Imai K, Baba H. Perioperative disabilities in activities of daily living are associated with worse prognosis after hepatectomy for colorectal liver metastasis. HPB (Oxford) 2024; 26:203-211. [PMID: 37770363 DOI: 10.1016/j.hpb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND The number of vulnerable patients with colorectal liver metastasis (CRLM) has increased. This study aimed to clarify the relationship between perioperative activities of daily living (ADL) and clinical outcomes after hepatectomy for CRLM. METHODS Consecutive patients undergoing resection of CRLM from 2004 to 2020 were included. Pre- or postoperative ADL was evaluated according to Barthel index (BI) scores, which range from 0 to 100. Higher scores represent greater level of independence in ADL. Pre- or postoperative BI scores of ≤85 were defined as perioperative disabilities in ADL. Multivariable Cox proportional hazard regression models were utilised to estimate adjusted hazard ratios (HRs) and confidence interval (CI). RESULTS A total of 218 patients were included, 16 (7.3%) revealed preoperative BI scores of ≤85, and 32 (15%) revealed postoperative BI scores of ≤85. In multivariate analyses, the perioperative disabilities in ADL were independently associated with shorter overall survival (HR, 1.96; 95% CI, 1.10-3.31; P = 0.023) and cancer-specific survival (HR, 2.31; 95% CI, 1.29-3.92; P = 0.006). CONCLUSION Perioperative disabilities in ADL were associated with poor prognosis following hepatectomy for CRLM. Improving preoperative vulnerability and preventing functional decline after surgery may provide a favourable prognosis for patients with CRLM.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masataka Maruno
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinsei Yumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Nitta
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
González‐Olmedo C, García‐Verdejo FJ, Reguera‐Teba A, Rosa‐Garrido C, López‐López JA, Díaz‐Beltrán L, García PM, Luque‐Caro N, Gálvez‐Montosa F, Ortega‐Granados AL, Ruiz‐Sanjuan M, Cózar‐Ibáñez A, Sainz J, Marchal JA, Camacho J, del Palacio JP, Fernández‐Godino R, Díaz C, Sánchez‐Rovira P. Metabolomics signature as a survival predictor in patients with resectable colorectal liver metastasis. Clin Transl Med 2024; 14:e1541. [PMID: 38239072 PMCID: PMC10797245 DOI: 10.1002/ctm2.1541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Affiliation(s)
- Carmen González‐Olmedo
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
- Department of Biomedicine, Translational Research and Personalised MedicineUniversity of GranadaGranadaSpain
| | | | - Antonio Reguera‐Teba
- Department of General SurgeryUniversity Hospital of JaénJaénAndaluciaSpain
- Department of MedicineFaculty of Health SciencesUniversity of JaénJaénSpain
| | - Carmen Rosa‐Garrido
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | | | - Leticia Díaz‐Beltrán
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | - Patricia Mena García
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | | | | | | | - María Ruiz‐Sanjuan
- Medical Oncology UnitUniversity Hospital of JaénJaénSpain
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental Alejandro Otero, University Hospital of JaénJaénSpain
| | | | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTSGranadaSpain
- Instituto de Investigación Biosanataria IBs.GranadaGranadaSpain
- Consortium for Biomedical Research in Epidemiology and Public HealthBarcelonaSpain
- Department of Biochemistry and Molecular Biology IUniversity of GranadaGranadaSpain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanataria IBs.GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical ResearchUniversity of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - José Camacho
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | - Rosario Fernández‐Godino
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmillaGranadaSpain
| | | |
Collapse
|
5
|
Costantini S, Di Gennaro E, Capone F, De Stefano A, Nasti G, Vitagliano C, Setola SV, Tatangelo F, Delrio P, Izzo F, Avallone A, Budillon A. Plasma metabolomics, lipidomics and cytokinomics profiling predict disease recurrence in metastatic colorectal cancer patients undergoing liver resection. Front Oncol 2023; 12:1110104. [PMID: 36713567 PMCID: PMC9875807 DOI: 10.3389/fonc.2022.1110104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Purpose In metastatic colorectal cancer (mCRC) patients (pts), treatment strategies integrating liver resection with induction chemotherapy offer better 5-year survival rates than chemotherapy alone. However, liver resection is a complex and costly procedure, and recurrence occurs in almost 2/3rds of pts, suggesting the need to identify those at higher risk. The aim of this work was to evaluate whether the integration of plasma metabolomics and lipidomics combined with the multiplex analysis of a large panel of plasma cytokines can be used to predict the risk of relapse and other patient outcomes after liver surgery, beyond or in combination with clinical morphovolumetric criteria. Experimental design Peripheral blood metabolomics and lipidomics were performed by 600 MHz NMR spectroscopy on plasma from 30 unresectable mCRC pts treated with bevacizumab plus oxaliplatin-based regimens within the Obelics trial (NCT01718873) and subdivided into responder (R) and non-R (NR) according to 1-year disease-free survival (DFS): ≥ 1-year (R, n = 12) and < 1-year (NR, n = 18). A large panel of cytokines, chemokines, and growth factors was evaluated on the same plasma using Luminex xMAP-based multiplex bead-based immunoassay technology. A multiple biomarkers model was built using a support vector machine (SVM) classifier. Results Sparse partial least squares discriminant analysis (sPLS-DA) and loading plots obtained by analyzing metabolomics profiles of samples collected at the time of response evaluation when resectability was established showed significantly different levels of metabolites between the two groups. Two metabolites, 3-hydroxybutyrate and histidine, significantly predicted DFS and overall survival. Lipidomics analysis confirmed clear differences between the R and NR pts, indicating a statistically significant increase in lipids (cholesterol, triglycerides and phospholipids) in NR pts, reflecting a nonspecific inflammatory response. Indeed, a significant increase in proinflammatory cytokines was demonstrated in NR pts plasma. Finally, a multiple biomarkers model based on the combination of presurgery plasma levels of 3-hydroxybutyrate, cholesterol, phospholipids, triglycerides and IL-6 was able to correctly classify patients by their DFS with good accuracy. Conclusion Overall, this exploratory study suggests the potential of these combined biomarker approaches to predict outcomes in mCRC patients who are candidates for liver metastasis resection after induction treatment for defining personalized management and treatment strategies.
Collapse
Affiliation(s)
- Susan Costantini
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Guglielmo Nasti
- Innovative Therapy for Abdominal Metastases Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Sergio Venanzio Setola
- Radiology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy,*Correspondence: Alfredo Budillon,
| |
Collapse
|
6
|
Chen Z, Han S, Zheng P, Zhang J, Zhou S, Jia G. Landscape of lipidomic metabolites in gut-liver axis of Sprague-Dawley rats after oral exposure to titanium dioxide nanoparticles. Part Fibre Toxicol 2022; 19:53. [PMID: 35922847 PMCID: PMC9351087 DOI: 10.1186/s12989-022-00484-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The application of titanium dioxide nanoparticles (TiO2 NPs) as food additives poses a risk of oral exposure that may lead to adverse health effects. Even though the substantial evidence supported liver as the target organ of TiO2 NPs via oral exposure, the mechanism of liver toxicity remains largely unknown. Since the liver is a key organ for lipid metabolism, this study focused on the landscape of lipidomic metabolites in gut-liver axis of Sprague Dawley (SD) rats exposed to TiO2 NPs at 0, 2, 10, 50 mg/kg body weight per day for 90 days. Results TiO2 NPs (50 mg/kg) caused slight hepatotoxicity and changed lipidomic signatures of main organs or systems in the gut-liver axis including liver, serum and gut. The cluster profile from the above biological samples all pointed to the same key metabolic pathway and metabolites, which was glycerophospholipid metabolism and Phosphatidylcholines (PCs), respectively. In addition, absolute quantitative lipidomics verified the changes of three PCs concentrations, including PC (16:0/20:1), PC (18:0/18:0) and PC (18:2/20:2) in the serum samples after treatment of TiO2 NPs (50 mg/kg). The contents of malondialdehyde (MDA) in serum and liver increased significantly, which were positively correlated with most differential lipophilic metabolites. Conclusions The gut was presumed to be the original site of oxidative stress and disorder of lipid metabolism, which resulted in hepatotoxicity through the gut-liver axis. Lipid peroxidation may be the initial step of lipid metabolism disorder induced by TiO2 NPs. Most nanomaterials (NMs) have oxidation induction and antibacterial properties, so the toxic pathway revealed in the present study may be primary and universal. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00484-9.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|