1
|
Mathavan A, Krekora U, Belaunzaran Dominguez M, Mathavan A. Heterozygous desmoplakin ( DSP) variants presenting with early onset cardiomyopathy and refractory ventricular tachycardia. BMJ Case Rep 2024; 17:e259308. [PMID: 38383124 PMCID: PMC10882317 DOI: 10.1136/bcr-2023-259308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Arrhythmogenic cardiomyopathy is a non-ischaemic cardiomyopathy characterised by the presence of myocardial dysfunction and inherited conduction disease that predisposes patients to malignant ventricular arrhythmias and sudden cardiac death. There is a growing awareness of the diverse phenotypic presentation of arrhythmogenic cardiomyopathy, which may demonstrate preferential involvement of the left, right or both ventricles. A subset of arrhythmogenic cardiomyopathy may be due to mutations of desmosomes, intercellular junctions of the myocardium that promote structural and electrical integrity. Mutations of desmoplakin, encoded by the DSP gene and a critical constituent protein of desmosomes, have been implicated in the onset of arrhythmogenic cardiomyopathy. We present a structured case report of desmoplakin arrhythmogenic cardiomyopathy secondary to novel heterozygous DSP mutations (c.1061T>C and c.795G>C) manifesting as early onset non-ischaemic cardiomyopathy and recurrent ventricular tachycardia refractory to multiple modalities of therapy, including oral antiarrhythmics, cardiac ablation and bilateral sympathectomy, as well as frequent implantable cardioverter-defibrillator discharges.
Collapse
Affiliation(s)
- Akshay Mathavan
- Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Urszula Krekora
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Akash Mathavan
- Internal Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Zhang Y, Zhang K, Prakosa A, James C, Zimmerman SL, Carrick R, Sung E, Gasperetti A, Tichnell C, Murray B, Calkins H, Trayanova NA. Predicting ventricular tachycardia circuits in patients with arrhythmogenic right ventricular cardiomyopathy using genotype-specific heart digital twins. eLife 2023; 12:RP88865. [PMID: 37851708 PMCID: PMC10584370 DOI: 10.7554/elife.88865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia James
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | | | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
3
|
Zhang Y, Zhang K, Prakosa A, James C, Zimmerman SL, Carrick R, Sung E, Gasperetti A, Tichnell C, Murray B, Calkins H, Trayanova N. Predicting Ventricular Tachycardia Circuits in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy using Genotype-specific Heart Digital Twins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290587. [PMID: 37398074 PMCID: PMC10312861 DOI: 10.1101/2023.05.31.23290587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia James
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Stefan L Zimmerman
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Cheng WH, Chung FP, Lin YJ, Lo LW, Chang SL, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Liu CM, Liu SH, Chen SA. Catheter Ablation in Arrhythmic Cardiac Diseases: Endocardial and Epicardial Ablation. Rev Cardiovasc Med 2022; 23:324. [PMID: 39077706 PMCID: PMC11262352 DOI: 10.31083/j.rcm2309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a group of arrhythmogenic disorders of the myocardium that are not caused by ischemic, hypertensive, or valvular heart disease. The clinical manifestations of ACMs may overlap those of dilated cardiomyopathy, complicating the differential diagnosis. In several ACMs, ventricular tachycardia (VT) has been observed at an early stage, regardless of the severity of the disease. Therefore, preventing recurrences of VT can be a clinical challenge. There is a wide range of efficacy and side effects associated with the use of antiarrhythmic drugs (AADs) in the treatment of VT. In addition to AADs, patients with ACM and ventricular tachyarrhythmias may benefit from catheter ablation, especially if they are drug-refractory. The differences in pathogenesis between the various types of ACMs can lead to heterogeneous distributions of arrhythmogenic substrates, non-uniform ablation strategies, and distinct ablation outcomes. Ablation has been documented to be effective in eliminating ventricular tachyarrhythmias in arrhythmogenic right ventricular dysplasia (ARVC), sarcoidosis, Chagas cardiomyopathy, and Brugada syndrome (BrS). As an entity that is rare in nature, ablation for ventricular tachycardia in certain forms of ACM may only be reported through case reports, such as amyloidosis and left ventricular noncompaction. Several types of ACMs, including ARVC, sarcoidosis, Chagas cardiomyopathy, BrS, and left ventricular noncompaction, may exhibit diseased substrates within or adjacent to the epicardium that may be accountable for ventricular arrhythmogenesis. As a result, combining endocardial and epicardial ablation is of clinical importance for successful ablation. The purpose of this article is to provide a comprehensive overview of the substrate characteristics, ablation strategies, and ablation outcomes of various types of ACMs using endocardial and epicardial approaches.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taitung Branch, 95050 Taitung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 40705 Taichung, Taiwan
| |
Collapse
|