1
|
Celotto C, Sánchez C, Abdollahpur M, Sandberg F, Rodriguez Mstas JF, Laguna P, Pueyo E. The frequency of atrial fibrillatory waves is modulated by the spatiotemporal pattern of acetylcholine release: a 3D computational study. Front Physiol 2024; 14:1189464. [PMID: 38235381 PMCID: PMC10791938 DOI: 10.3389/fphys.2023.1189464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/10/2023] [Indexed: 01/19/2024] Open
Abstract
In atrial fibrillation (AF), the ECG P-wave, which represents atrial depolarization, is replaced with chaotic and irregular fibrillation waves (f waves). The f-wave frequency, F f, shows significant variations over time. Cardiorespiratory interactions regulated by the autonomic nervous system have been suggested to play a role in such variations. We conducted a simulation study to test whether the spatiotemporal release pattern of the parasympathetic neurotransmitter acetylcholine (ACh) modulates the frequency of atrial reentrant circuits. Understanding parasympathetic involvement in AF may guide more effective treatment approaches and could help to design autonomic markers alternative to heart rate variability (HRV), which is not available in AF patients. 2D tissue and 3D whole-atria models of human atrial electrophysiology in persistent AF were built. Different ACh release percentages (8% and 30%) and spatial ACh release patterns, including spatially random release and release from ganglionated plexi (GPs) and associated nerves, were considered. The temporal pattern of ACh release, ACh(t), was simulated following a sinusoidal waveform of frequency 0.125 Hz to represent the respiratory frequency. Different mean concentrations ( A C h ¯ ) and peak-to-peak ranges of ACh (ΔACh) were tested. We found that temporal variations in F f, F f(t), followed the simulated temporal ACh(t) pattern in all cases. The temporal mean of F f(t), F ¯ f , depended on the fibrillatory pattern (number and location of rotors), the percentage of ACh release nodes and A C h ¯ . The magnitude of F f(t) modulation, ΔF f, depended on the percentage of ACh release nodes and ΔACh. The spatial pattern of ACh release did not have an impact on F ¯ f and only a mild impact on ΔF f. The f-wave frequency, being indicative of vagal activity, has the potential to drive autonomic-based therapeutic actions and could replace HRV markers not quantifiable from AF patients.
Collapse
Affiliation(s)
- Chiara Celotto
- BSICoS Group, I3A and IIS-Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER - Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Carlos Sánchez
- BSICoS Group, I3A and IIS-Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER - Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | | | - Frida Sandberg
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | - Pablo Laguna
- BSICoS Group, I3A and IIS-Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER - Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Esther Pueyo
- BSICoS Group, I3A and IIS-Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER - Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
2
|
Marchandise S, Garnir Q, Scavée C, Varnavas V, le Polain de Waroux JB, Wauters A, Beauloye C, Roelants V, Gerber BL. Prediction of Left Atrial Fibrosis and Success of Catheter Ablation by Speckle Tracking Echocardiography in Patients Imaged in Persistent Atrial Fibrillation. Front Cardiovasc Med 2022; 9:856796. [PMID: 35694674 PMCID: PMC9176405 DOI: 10.3389/fcvm.2022.856796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNon-invasive evaluation of left atrial structural and functional remodeling should be considered in all patients with persistent atrial fibrillation (AF) to optimal management. Speckle tracking echocardiography (STE) has been shown to predict AF recurrence after catheter ablation; however in most studies, patients had paroxysmal AF, and STE was performed while patients were in sinus rhythm.AimThe aim of this study was to evaluate the ability of STE parameters acquired during persistent AF to assess atrial fibrosis measured by low voltage area, and to predict maintenance of sinus rhythm of catheter ablation.MethodsA total of 94 patients (69 men, 65 ± 9 years) with persistent AF prospectively underwent measurement of Global Peak Atrial Longitudinal Strain (GPALS), indexed LA Volume (LAVI), E/e′ ratio, and LA stiffness index (the ratio of E/e′ to GPALS) by STE prior to catheter ablation, while in AF. Low-voltage area (LVA) was assessed by electro-anatomical mapping and categorized into absent, moderate (>0 to <15%), and high (≥15%) atrial extent. AF recurrence was evaluated after 3 months of blanking.ResultsMultivariable regression showed that LAVI, GPALS, and LA stiffness independently predicted LVA extent after correcting for age, glomerular filtration rate, and CHA2DS2-VASc score. Of all the parameters, LA stiffness index had the highest diagnostic accuracy (AUC 0.85), allowing using a cut-off value ≥0.7 to predict moderate or high LVA with 88% sensitivity and 47% specificity, respectively. In multivariable Cox analysis, both GPALS and LA stiffness were able to significantly improve the c statistic to predict AF recurrence (n = 40 over 9 months FU) over CHARGE-AF (p < 0.001 for GPALS and p = 0.01 for LA stiffness) or CHA2DS2-VASc score (p < 0.001 for GPALS and p = 0.02 for LA stiffness). GPALS and LA stiffness also improved the net reclassification index (NRI) over the CHARGE-AF index (NRI 0.67, 95% CI [0.33–1.13] for GPALS and NRI 0.73, 95% CI [0.12–0.91] for LA stiffness, respectively), and over the CHA2DS2-VASc score (NRI 0.43, 95% CI [−0.14 to 0.69] for GPALS and NRI 0.52, 95% CI [0.10–0.84], respectively) for LA stiffness to predict AF recurrence at 9 months.ConclusionSTE parameters acquired during AF allow prediction of LVA extent and AF recurrence in patients with persistent AF undergoing catheter ablation. Therefore, STE could be a valuable approach to select candidates for catheter ablation.
Collapse
|
3
|
Abstract
Atrial fibrillation (AF) contributes to morbidity and mortality of millions of individuals. Its molecular, cellular, neurohumoral, and hemodynamic pathophysiological mechanisms are complex, and there is increasing awareness that a wide range of comorbidities can contribute to AF-promoting atrial remodeling. Moreover, recent research has highlighted that AF risk is not constant and that the temporal variation in concomitant conditions contributes to the complexity of AF dynamics. In this review, we provide an overview of fundamental AF mechanisms related to established and emerging comorbidities or risk factors and their role in the AF-promoting effects. We focus on the accumulating evidence for the relevance of temporally dynamic changes in these risk factors and the consequence for AF initiation and maintenance. Finally, we highlight the important implications for future research and clinical practice resulting from the dynamic interaction between AF risk factors and mechanisms.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands; .,Department of Cardiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, 5005 Adelaide, South Australia, Australia
| | - Ulrich Schotten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands; .,Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| |
Collapse
|
4
|
Marta Varela, Roy A, Lee J. A survey of pathways for mechano-electric coupling in the atria. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:136-145. [PMID: 33053408 PMCID: PMC7848589 DOI: 10.1016/j.pbiomolbio.2020.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022]
Abstract
Mechano-electric coupling (MEC) in atrial tissue has received sparse investigation to date, despite the well-known association between chronic atrial dilation and atrial fibrillation (AF). Of note, no fewer than six different mechanisms pertaining to stretch-activated channels, cellular capacitance and geometric effects have been identified in the literature as potential players. In this mini review, we briefly survey each of these pathways to MEC. We then perform computational simulations using single cell and tissue models in presence of various stretch regimes and MEC pathways. This allows us to assess the relative significance of each pathway in determining action potential duration, conduction velocity and rotor stability. For chronic atrial stretch, we find that stretch-induced alterations in membrane capacitance decrease conduction velocity and increase action potential duration, in agreement with experimental findings. In the presence of time-dependent passive atrial stretch, stretch-activated channels play the largest role, leading to after-depolarizations and rotor hypermeandering. These findings suggest that physiological atrial stretches, such as passive stretch during the atrial reservoir phase, may play an important part in the mechanisms of atrial arrhythmogenesis. Passive strains caused by ventricular contraction need to be considered when incorporating mechano-electro feedback in atrial electrophysiology models. In chronic stretch, stretch-induced capacitance changes dominate. Chronic stretch leads to an increase in action potential duration and a reduction in conduction velocity, consistent with experimental studies. In the presence of passive stretch, stretch-activated channels can induce delayed after-depolarisations and lead to rotor hypermeandering. Mechano-electro feedback is thus likely to have implications for the genesis and maintenance of atrial arrhythmias.
Collapse
Affiliation(s)
- Marta Varela
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Aditi Roy
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Computing, University of Oxford, Oxford, UK
| | - Jack Lee
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Filos D, Tachmatzidis D, Maglaveras N, Vassilikos V, Chouvarda I. Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies. Front Physiol 2019; 10:742. [PMID: 31275161 PMCID: PMC6591370 DOI: 10.3389/fphys.2019.00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
The remarkable advances in high-performance computing and the resulting increase of the computational power have the potential to leverage computational cardiology toward improving our understanding of the pathophysiological mechanisms of arrhythmias, such as Atrial Fibrillation (AF). In AF, a complex interaction between various triggers and the atrial substrate is considered to be the leading cause of AF initiation and perpetuation. In electrocardiography (ECG), P-wave is supposed to reflect atrial depolarization. It has been found that even during sinus rhythm (SR), multiple P-wave morphologies are present in AF patients with a history of AF, suggesting a higher dispersion of the conduction route in this population. In this scoping review, we focused on the mechanisms which modify the electrical substrate of the atria in AF patients, while investigating the existence of computational models that simulate the propagation of the electrical signal through different routes. The adopted review methodology is based on a structured analytical framework which includes the extraction of the keywords based on an initial limited bibliographic search, the extensive literature search and finally the identification of relevant articles based on the reference list of the studies. The leading mechanisms identified were classified according to their scale, spanning from mechanisms in the cell, tissue or organ level, and the produced outputs. The computational modeling approaches for each of the factors that influence the initiation and the perpetuation of AF are presented here to provide a clear overview of the existing literature. Several levels of categorization were adopted while the studies which aim to translate their findings to ECG phenotyping are highlighted. The results denote the availability of multiple models, which are appropriate under specific conditions. However, the consideration of complex scenarios taking into account multiple spatiotemporal scales, personalization of electrophysiological and anatomical models and the reproducibility in terms of ECG phenotyping has only partially been tackled so far.
Collapse
Affiliation(s)
- Dimitrios Filos
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, United States
| | - Vassilios Vassilikos
- 3rd Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Park JW, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Hwang C, Pak HN. Atrial Fibrillation Catheter Ablation Increases the Left Atrial Pressure. Circ Arrhythm Electrophysiol 2019; 12:e007073. [DOI: 10.1161/circep.118.007073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Je-Wook Park
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| | - Chun Hwang
- Utah Valley Medical Center, Provo (C.H.)
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea (J.-W.P., H.T.Y., T.-H.K., J.-S.U., B.J., M.-H.L., H.-N.P.)
| |
Collapse
|
7
|
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW, Dibb KM. Calcium in the Pathophysiology of Atrial Fibrillation and Heart Failure. Front Physiol 2018; 9:1380. [PMID: 30337881 PMCID: PMC6180171 DOI: 10.3389/fphys.2018.01380] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Atrial fibrillation (AF) is commonly associated with heart failure. A bidirectional relationship exists between the two-AF exacerbates heart failure causing a significant increase in heart failure symptoms, admissions to hospital and cardiovascular death, while pathological remodeling of the atria as a result of heart failure increases the risk of AF. A comprehensive understanding of the pathophysiology of AF is essential if we are to break this vicious circle. In this review, the latest evidence will be presented showing a fundamental role for calcium in both the induction and maintenance of AF. After outlining atrial electrophysiology and calcium handling, the role of calcium-dependent afterdepolarizations and atrial repolarization alternans in triggering AF will be considered. The atrial response to rapid stimulation will be discussed, including the short-term protection from calcium overload in the form of calcium signaling silencing and the eventual progression to diastolic calcium leak causing afterdepolarizations and the development of an electrical substrate that perpetuates AF. The role of calcium in the bidirectional relationship between heart failure and AF will then be covered. The effects of heart failure on atrial calcium handling that promote AF will be reviewed, including effects on both atrial myocytes and the pulmonary veins, before the aspects of AF which exacerbate heart failure are discussed. Finally, the limitations of human and animal studies will be explored allowing contextualization of what are sometimes discordant results.
Collapse
Affiliation(s)
- Nathan C. Denham
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | - Katharine M. Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Gharaviri A, Verheule S, Eckstein J, Potse M, Kuklik P, Kuijpers NHL, Schotten U. How disruption of endo-epicardial electrical connections enhances endo-epicardial conduction during atrial fibrillation. Europace 2018; 19:308-318. [PMID: 28175261 DOI: 10.1093/europace/euv445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/11/2015] [Indexed: 11/12/2022] Open
Abstract
Aims Loss of side-to-side electrical connections between atrial muscle bundles is thought to underlie conduction disturbances predisposing to atrial fibrillation (AF). Putatively, disruption of electrical connections occurs not only within the epicardial layer but also between the epicardial layer and the endocardial bundle network, thus impeding transmural conductions (‘breakthroughs’). However, both clinical and experimental studies have shown an enhancement of breakthroughs during later stages of AF. We tested the hypothesis that endo-epicardial uncoupling enhances endo-epicardial electrical dyssynchrony, breakthrough rate (BTR), and AF stability. Methods and Results In a novel dual-layer computer model of the human atria, 100% connectivity between the two layers served as healthy control. Atrial structural remodelling was simulated by reducing the number of connections between the layers from 96 to 6 randomly chosen locations. With progressive elimination of connections, AF stability increased. Reduction in the number of connections from 96 to 24 resulted in an increase in endo-epicardial dyssynchrony from 6.6 ± 1.9 to 24.6 ± 1.3%, with a concomitant increase in BTR. A further reduction to 12 and 6 resulted in more pronounced endo-epicardial dyssynchrony of 34.4 ± 1.15 and 40.2 ± 0.52% but with BTR reduction. This biphasic relationship between endo-epicardial coupling and BTR was found independently from whether AF was maintained by re-entry or by ectopic focal discharges. Conclusion Loss of endo-epicardial coupling increases AF stability. There is a biphasic relation between endo-epicardial coupling and BTR. While at high degrees of endo-epicardial connectivity, the BTR is limited by the endo-epicardial synchronicity, at low degrees of connectivity, it is limited by the number of endo-epicardial connections.
Collapse
Affiliation(s)
- Ali Gharaviri
- Department of Physiology and Maastricht Centre of Systems Biology, Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | - Sander Verheule
- Department of Physiology and Maastricht Centre of Systems Biology, Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | - Jens Eckstein
- Department of Physiology and Maastricht Centre of Systems Biology, Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands.,Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Mark Potse
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands.,Institute of Computational Science, Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
| | - Pawel Kuklik
- Department of Physiology and Maastricht Centre of Systems Biology, Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | - Nico H L Kuijpers
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ulrich Schotten
- Department of Physiology and Maastricht Centre of Systems Biology, Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
9
|
Satriano A, Vigmond EJ, Schwartzman DS, Di Martino ES. Mechano-electric finite element model of the left atrium. Comput Biol Med 2018. [PMID: 29529527 DOI: 10.1016/j.compbiomed.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mechanical stretch plays a major role in modulating atrial function, being responsible for beat-by-beat responses to changes in chamber preload, enabling a prompt regulation of cardiac function. Mechano-electric coupling (MEC) operates through many mechanisms and has many targets, making it experimentally difficult to isolate causes and effects especially under sinus conditions where effects are more transient and subtle. Therefore, modelling is a powerful tool to help understand the role of MEC with respect to the atrial electromechanical interaction. We propose a cellular-based computational model of the left atrium that includes a strongly coupled MEC component and mitral flow component to account for correct pressure generation in the atrial chamber as a consequence of blood volume and contraction. The method was applied to a healthy porcine left atrium. Results of the strongly coupled simulation show that strains are higher in the areas adjacent to the mitral annulus, the rim of the appendage, around the pulmonary venous trunks and at the location of the Bachmann's bundle, approximately between the mitral annulus and the region where the venous tissue transitions into atrial. These are regions where arrhythmias are likely to originate. The role of stretch-activated channels was very small for sinus rhythm for the single cardiac beat simulation, although tension development was very sensitive to stretch. The method could be applied to investigate potential therapeutic interventions acting on the mechano-electrical properties of the left atrium.
Collapse
Affiliation(s)
- Alessandro Satriano
- Stephenson Cardiac Imaging Centre, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Edward J Vigmond
- Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr NW, Calgary, Alberta T2N 1N4, Canada; LIRYC, Electrophysiology and Heart Modelling Institute, PTIB-Hopital Xavier Arnozan, Avenue Haut-Lévèque, Pessac, 33600, France; IMB, University of Bordeaux, 351 Cours de la Liberation, Talence, 33405, France
| | - David S Schwartzman
- Heart and Vascular Institute, University of Pittsburgh, UPMC Presbyterian, B535, Pittsburgh, PA 15213 2582, United States
| | - Elena S Di Martino
- Department of Civil Engineering, Libin Cardiovascular Institute of Alberta and Centre for Bioengineering Research and Education, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
10
|
Thanigaimani S, McLennan E, Linz D, Mahajan R, Agbaedeng TA, Lee G, Kalman JM, Sanders P, Lau DH. Progression and reversibility of stretch induced atrial remodeling: Characterization and clinical implications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:376-386. [PMID: 28734850 DOI: 10.1016/j.pbiomolbio.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and across the developed nations, it contributes to increasing hospitalizations and healthcare burden. Several comorbidities and risk factors including hypertension, heart failure, obstructive sleep apnoea and obesity are known to play an important role in the initiation and perpetuation of AF and atrial stretch or dilatation may play a central mechanistic role. The impact of atrial stretch in the development of AF can vary dependent on the underlying disease. This review focuses on understanding the substrate for AF in conditions of acute and chronic stretch and in the presence of common co-morbidities or risk factors through the review of findings in both animal and human studies. Additionally, the reversibility of atrial remodeling following stretch release will also be discussed. Identification of clinical conditions associated with increased atrial stretch as well as the treatment or prevention of these conditions may help to prevent AF progression and improve sinus rhythm maintenance.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Emma McLennan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Thomas A Agbaedeng
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Tse G, Lai ETH, Yeo JM, Yan BP. Electrophysiological Mechanisms of Bayés Syndrome: Insights from Clinical and Mouse Studies. Front Physiol 2016; 7:188. [PMID: 27303306 PMCID: PMC4886053 DOI: 10.3389/fphys.2016.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Bayés syndrome is an under-recognized clinical condition characterized by inter-atrial block (IAB). This is defined electrocardiographically as P-wave duration > 120 ms and can be categorized into first, second and third degree IAB. It can be caused by inflammatory conditions such as systemic sclerosis and rheumatoid arthritis, abnormal protein deposition in cardiac amyloidosis, or neoplastic processes invading the inter-atrial conduction system, such as primary cardiac lymphoma. It may arise transiently during volume overload, autonomic dysfunction or electrolyte disturbances from vomiting. In other patients without an obvious cause, the predisposing factors are diabetes mellitus, hypertensive heart disease, and hypercholesterolemia. IAB has a strong association with atrial arrhythmogenesis, left atrial enlargement (LAE), and electro-mechanical discordance, increasing the risk of cerebrovascular accidents as well as myocardial and mesenteric ischemia. The aim of this review article is to synthesize experimental evidence on the pathogenesis of IAB and its underlying molecular mechanisms. Current medical therapies include anti-fibrotic, anti-arrhythmic and anti-coagulation agents, whereas interventional options include atrial resynchronization therapy by single or multisite pacing. Future studies will be needed to elucidate the significance of the link between IAB and atrial tachyarrhythmias in patients with different underlying etiologies and optimize the management options in these populations.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
12
|
Kim TH, Lee JS, Park J, Park JK, Uhm JS, Joung B, Lee MH, Pak HN. Blunted rate-dependent left atrial pressure response during isoproterenol infusion in atrial fibrillation patients with impaired left ventricular diastolic function: a comparison to pacing. Europace 2016; 17 Suppl 2:ii89-96. [DOI: 10.1093/europace/euv239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Chaikriangkrai K, Jyothula S, Jhun HY, Chang SM, Graviss EA, Shuraih M, Rami TG, Dave AS, Valderrábano M. Incidence, Risk Factors, Prognosis, and Electrophysiological Mechanisms of Atrial Arrhythmias after Lung Transplantation. JACC Clin Electrophysiol 2015; 1:296-305. [PMID: 26557726 DOI: 10.1016/j.jacep.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate incidence and timing, risk factors, prognostic significance, and electrophysiological mechanisms of atrial arrhythmia (AA) after lung transplantation. BACKGROUND Although new-onset AA is common after thoracic surgery and is associated with poorer outcomes, prognostic and mechanistic data is sparse in lung transplant populations. METHOD A total of 293 consecutive isolated lung transplant recipients without known AA were retrospectively reviewed. Mean follow-up was 28±17 months. Electrophysiology studies (EPS) were performed in 25 patients with AA. RESULTS The highest incidence of new-onset AA after lung transplantation occurred within 30 days postoperative AA, (25 % of all patients). In multivariable analysis, postoperative AA was associated with double lung transplantation (OR 2.79; p=0.005) and lower mean pulmonary artery pressure (OR 0.95; p=0.027). Patients with postoperative AA had longer hospital stays (21 days vs 12 days; p<0.001). Postoperative AA was independently associated with late AA (HR 13.52; p<0.001) but not mortality (HR 1.55; p=0.14). In EPS, there were 14 patients with atrial flutter alone and 11 with atrial flutter and fibrillation. Of all EPS patients, 20 (80%) had multiple AA mechanisms, including peritricuspid flutter (48%), perimitral flutter (36%), right atrial incisional reentry (24%), focal tachycardia from recipient pulmonary vein (PV) antrum (32 %), focal PV fibrillation (24%), and left atrial roof flutter (20%). Left atrial mechanisms were present in 80% (20/25) of EPS patients and originated from the anastomotic PV antrum. CONCLUSIONS Postoperative AA was independently associated with longer length of stay and late AA but not mortality. Pleomorphic PV antral arrhythmogenesis from native PV antrum is the main cause of AA after lung transplantation.
Collapse
Affiliation(s)
| | - Soma Jyothula
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA ; Methodist J.C. Walter Jr. Transplant Center; Houston Methodist Hospital, Houston, TX, USA
| | - Hye Yeon Jhun
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Su Min Chang
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Edward A Graviss
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Mossaab Shuraih
- Texas Heart Institute/St. Luke's Episcopal Hospital, Houston, TX, USA
| | - Tapan G Rami
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Amish S Dave
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Miguel Valderrábano
- Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
Ravens U, Katircioglu-Öztürk D, Wettwer E, Christ T, Dobrev D, Voigt N, Poulet C, Loose S, Simon J, Stein A, Matschke K, Knaut M, Oto E, Oto A, Güvenir HA. Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation. Med Biol Eng Comput 2014; 53:263-73. [PMID: 25466224 DOI: 10.1007/s11517-014-1232-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/16/2014] [Indexed: 12/20/2022]
Abstract
Ex vivo recorded action potentials (APs) in human right atrial tissue from patients in sinus rhythm (SR) or atrial fibrillation (AF) display a characteristic spike-and-dome or triangular shape, respectively, but variability is huge within each rhythm group. The aim of our study was to apply the machine-learning algorithm ranking instances by maximizing the area under the ROC curve (RIMARC) to a large data set of 480 APs combined with retrospectively collected general clinical parameters and to test whether the rules learned by the RIMARC algorithm can be used for accurately classifying the preoperative rhythm status. APs were included from 221 SR and 158 AF patients. During a learning phase, the RIMARC algorithm established a ranking order of 62 features by predictive value for SR or AF. The model was then challenged with an additional test set of features from 28 patients in whom rhythm status was blinded. The accuracy of the risk prediction for AF by the model was very good (0.93) when all features were used. Without the seven AP features, accuracy still reached 0.71. In conclusion, we have shown that training the machine-learning algorithm RIMARC with an experimental and clinical data set allows predicting a classification in a test data set with high accuracy. In a clinical setting, this approach may prove useful for finding hypothesis-generating associations between different parameters.
Collapse
Affiliation(s)
- Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Walters TE, Lee G, Spence S, Larobina M, Atkinson V, Antippa P, Goldblatt J, O’Keefe M, Sanders P, Kistler PM, Kalman JM. Acute Atrial Stretch Results in Conduction Slowing and Complex Signals at the Pulmonary Vein to Left Atrial Junction. Circ Arrhythm Electrophysiol 2014; 7:1189-97. [DOI: 10.1161/circep.114.001894] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tomos E. Walters
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Geoffrey Lee
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Steven Spence
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Marco Larobina
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Victoria Atkinson
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Phillip Antippa
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - John Goldblatt
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Michael O’Keefe
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Prashanthan Sanders
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Peter M. Kistler
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| | - Jonathan M. Kalman
- From the Department of Cardiology (T.E.W., G.L., S.S., J.M.K.) and Department of Cardiothoracic Surgery (M.L., V.A., P.A., J.G., M.O.K.), Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia (T.E.W., G.L., P.M.K., J.M.K.); Centre for Heart Rhythm Disorder, University of Adelaide and Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia (P.S.); and Department of Cardiology, Alfred Hospital and Baker IDI, Melbourne,
| |
Collapse
|
16
|
Verheule S, Eckstein J, Linz D, Maesen B, Bidar E, Gharaviri A, Schotten U. Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:173-85. [DOI: 10.1016/j.pbiomolbio.2014.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
17
|
Trayanova NA. Mathematical approaches to understanding and imaging atrial fibrillation: significance for mechanisms and management. Circ Res 2014; 114:1516-31. [PMID: 24763468 DOI: 10.1161/circresaha.114.302240] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans. The mechanisms that govern AF initiation and persistence are highly complex, of dynamic nature, and involve interactions across multiple temporal and spatial scales in the atria. This article aims to review the mathematical modeling and computer simulation approaches to understanding AF mechanisms and aiding in its management. Various atrial modeling approaches are presented, with descriptions of the methodological basis and advancements in both lower-dimensional and realistic geometry models. A review of the most significant mechanistic insights made by atrial simulations is provided. The article showcases the contributions that atrial modeling and simulation have made not only to our understanding of the pathophysiology of atrial arrhythmias, but also to the development of AF management approaches. A summary of the future developments envisioned for the field of atrial simulation and modeling is also presented. The review contends that computational models of the atria assembled with data from clinical imaging modalities that incorporate electrophysiological and structural remodeling could become a first line of screening for new AF therapies and approaches, new diagnostic developments, and new methods for arrhythmia prevention.
Collapse
Affiliation(s)
- Natalia A Trayanova
- From the Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
18
|
Kuijpers NHL, Hermeling E, Lumens J, ten Eikelder HMM, Delhaas T, Prinzen FW. Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT. Am J Physiol Heart Circ Physiol 2014; 306:H1644-59. [DOI: 10.1152/ajpheart.00689.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics. Each ventricular wall was composed of multiple mechanically and electrically coupled myocardial segments. MEC was incorporated by allowing adaptation of L-type Ca2+ current aiming at minimal dispersion of local external work, an approach that we previously applied to replicate T-wave memory in a synchronous heart after a period of asynchronous activation. LBBB instantaneously decreased left-ventricular stroke work and increased end-diastolic volume. During sustained LBBB, MEC reduced intraventricular dispersion of mechanical workload and repolarization. However, MEC-induced reduction in contractility in late-activated regions was larger than the contractility increase in early-activated regions, resulting in further decrease of stroke work and increase of end-diastolic volume. Upon the start of CRT, stroke work increased despite a wider dispersion of mechanical workload. During sustained CRT, MEC-induced reduction in dispersion of workload and repolarization coincided with a further reduction in end-diastolic volume. In conclusion, MEC may represent a useful framework for better understanding the long-term changes in cardiac electrophysiology and contraction following LBBB as well as CRT.
Collapse
Affiliation(s)
- Nico H. L. Kuijpers
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Evelien Hermeling
- Department of Radiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Huub M. M. ten Eikelder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Nayak AR, Pandit R. Spiral-wave dynamics in ionically realistic mathematical models for human ventricular tissue: the effects of periodic deformation. Front Physiol 2014; 5:207. [PMID: 24959148 PMCID: PMC4050366 DOI: 10.3389/fphys.2014.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity θ and the wavelength λ of a plane wave; we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic modulation of λ; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNP04 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.
Collapse
Affiliation(s)
- Alok R. Nayak
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangalore, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of ScienceBangalore, India
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific ResearchBangalore, India
| |
Collapse
|
20
|
High left atrial pressures are associated with advanced electroanatomical remodeling of left atrium and independent predictors for clinical recurrence of atrial fibrillation after catheter ablation. Heart Rhythm 2014; 11:953-60. [DOI: 10.1016/j.hrthm.2014.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 11/23/2022]
|
21
|
Atrial fibrillation: A progressive atrial myopathy or a distinct disease? Int J Cardiol 2014; 171:126-33. [DOI: 10.1016/j.ijcard.2013.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/09/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
|
22
|
Jones G, Spencer BD, Adeniran I, Zhang H. Development of biophysically detailed electrophysiological models for pacemaking and non-pacemaking human pulmonary vein cardiomyocytes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:199-202. [PMID: 23365866 DOI: 10.1109/embc.2012.6345905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ectopic foci originating from the pulmonary veins (PVs) have been suggested as the underlying cause for generating atrial arrhythmias that include atrial fibrillation (AF). Recent experimental findings indicate two types of PV cells: pacemaking and non-pacemaking. In this study, we have developed two mathematical models for human PV cardiomyocytes with and without pacemaking activities. The models were reconstructed by modifying an existing model of the human right atrium to incorporate extant experimental data on the electrical differences between the two cell types. Differences in their action potential (AP) profiles and automaticity were reproduced by the models, which can be attributed to the observed differences in the current densities of I(NCX), I(to), I(Na) and I(Ca-L), as well as the difference in the channel kinetics of I(Ca-L) and inclusion of the I(f) and I(Ca-T) currents in the pacemaking cells. The developed models provide a useful tool suitable for studying the substrates for generating AF.
Collapse
Affiliation(s)
- Gareth Jones
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PLoS One 2013; 8:e60287. [PMID: 23573245 PMCID: PMC3616032 DOI: 10.1371/journal.pone.0060287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
Recruitment of stretch-activated channels, one of the mechanisms of mechano-electric feedback, has been shown to influence the stability of scroll waves, the waves that underlie reentrant arrhythmias. However, a comprehensive study to examine the effects of recruitment of stretch-activated channels with different reversal potentials and conductances on scroll wave stability has not been undertaken; the mechanisms by which stretch-activated channel opening alters scroll wave stability are also not well understood. The goals of this study were to test the hypothesis that recruitment of stretch-activated channels affects scroll wave stability differently depending on stretch-activated channel reversal potential and channel conductance, and to uncover the relevant mechanisms underlying the observed behaviors. We developed a strongly-coupled model of human ventricular electromechanics that incorporated human ventricular geometry and fiber and sheet orientation reconstructed from MR and diffusion tensor MR images. Since a wide variety of reversal potentials and channel conductances have been reported for stretch-activated channels, two reversal potentials, −60 mV and −10 mV, and a range of channel conductances (0 to 0.07 mS/µF) were implemented. Opening of stretch-activated channels with a reversal potential of −60 mV diminished scroll wave breakup for all values of conductances by flattening heterogeneously the action potential duration restitution curve. Opening of stretch-activated channels with a reversal potential of −10 mV inhibited partially scroll wave breakup at low conductance values (from 0.02 to 0.04 mS/µF) by flattening heterogeneously the conduction velocity restitution relation. For large conductance values (>0.05 mS/µF), recruitment of stretch-activated channels with a reversal potential of −10 mV did not reduce the likelihood of scroll wave breakup because Na channel inactivation in regions of large stretch led to conduction block, which counteracted the increased scroll wave stability due to an overall flatter conduction velocity restitution.
Collapse
|
24
|
Electrophysiological effects of acute atrial stretch on persistent atrial fibrillation in patients undergoing open heart surgery. Heart Rhythm 2012; 10:322-30. [PMID: 23128018 DOI: 10.1016/j.hrthm.2012.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND The electrophysiologic effects of acute atrial dilatation and dedilatation in humans with chronic atrial fibrillation remains to be elucidated. OBJECTIVE To study the electrophysiological effects of acute atrial dedilatation and subsequent dilatation in patients with long-standing persistent atrial fibrillation (AF) with structural heart disease undergoing elective cardiac surgery. METHODS Nine patients were studied. Mean age was 71 ± 10 years, and left ventricular ejection was 46% ± 6%. Patients had at least moderate mitral valve regurgitation and dilated atria. After sternotomy and during extracorporal circulation, mapping was performed on the beating heart with 2 multielectrode arrays (60 electrodes each, interelectrode distance 1.5 mm) positioned on the lateral wall of the right atrium (RA) and left atrium (LA). Atrial pressure and size were altered by modifying extracorporal circulation. AF electrograms were recorded at baseline after dedilation and after dilatation of the atria afterward. RESULTS At baseline, the median AF cycle length (mAFCL) was 184 ± 27 ms in the RA and 180 ± 17 ms in the LA. After dedilatation, the mAFCL shortened significantly to 168 ± 13 ms in the RA and to 168 ± 20 ms in the LA. Dilatation lengthened mAFCL significantly to 189 ± 17 ms in the RA and to 185 ± 23 ms in the LA. Conduction block (CB) at baseline was 14.3% ± 3.6% in the RA and 17.3% ± 5.5% in the LA. CB decreased significantly with dedilatation to 7.4% ± 2.9% in the RA and to 7.9% ± 6.3% in the LA. CB increased significantly with dilatation afterward to 15.0% ± 8.3% in the RA and to 18.5% ± 16.0% in the LA. CONCLUSIONS Acute dedilatation of the atria in patients with long-standing persistent AF causes a decrease in the mAFCL in both atria. Subsequent dilatation increased the mAFCL. The amount of CB decreased with dedilatation and increased with dilatation afterward in both atria.
Collapse
|
25
|
Gharaviri A, Verheule S, Eckstein J, Potse M, Kuijpers NH, Schotten U. A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation. ACTA ACUST UNITED AC 2012; 14 Suppl 5:v10-v16. [DOI: 10.1093/europace/eus270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:278-94. [DOI: 10.1016/j.pbiomolbio.2012.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
|
27
|
Malik A, Hsu JC, Hoopes C, Itinarelli G, Marcus GM. Elevated pulmonary artery systolic pressures are associated with a lower risk of atrial fibrillation following lung transplantation. J Electrocardiol 2012; 46:38-42. [PMID: 22999321 DOI: 10.1016/j.jelectrocard.2012.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is common after open-chest procedures, but the etiology remains poorly understood. Lung transplant procedures allow for the study of novel contributing factors. METHODS Records of lung transplant procedures performed at a single center between 2002 and 2009 were reviewed. RESULTS Of 174 patients, 27 (16%) had AF a median 6 days post-surgery. Post-operative AF patients less often had right ventricular hypertrophy (RVH) by either electrocardiogram (0 versus 14%, P=.042) or echocardiography (19% versus 47%, P=.006), and had lower pulmonary artery systolic pressures (PASP) (39 ± 12 versus 51 ± 22, P=.005). After multivariable adjustment, every 10-mm Hg increase in PASP was associated with a 31% reduction in the odds of post-operative AF (OR 0.69, 95% CI 0.49-0.98, P=.035). A higher pulmonary pressure was the only predictor independently associated with less post-operative AF. CONCLUSIONS Higher PASP was associated with a lower risk of AF after lung transplantation.
Collapse
Affiliation(s)
- Anuj Malik
- Division of Cardiology, Electrophysiology Section, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
28
|
Hermeling E, Delhaas T, Prinzen FW, Kuijpers NHL. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:359-71. [PMID: 22835663 DOI: 10.1016/j.pbiomolbio.2012.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function.
Collapse
Affiliation(s)
- Evelien Hermeling
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| | | | | | | |
Collapse
|
29
|
Opthof T, Sutton P, Coronel R, Wright S, Kallis P, Taggart P. The Association of Abnormal Ventricular Wall Motion and Increased Dispersion of Repolarization in Humans is Independent of the Presence of Myocardial Infarction. Front Physiol 2012; 3:235. [PMID: 22783201 PMCID: PMC3388480 DOI: 10.3389/fphys.2012.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 06/11/2012] [Indexed: 11/13/2022] Open
Abstract
Abnormal ventricular wall motion is a strong clinical predictor of sudden, arrhythmic, cardiac death. Dispersion in repolarization is a prerequisite for the initiation of re-entrant arrhythmia. We hypothesize that regionally decreased wall motion is associated with heterogeneity of repolarization. We measured local activation times, activation-recovery intervals (ARIs, surrogate for action potential duration), and repolarization times using a multielectrode grid at nine segments on the left ventricular epicardium in 23 patients undergoing coronary artery surgery. Regional wall motion was simultaneously assessed using intraoperative transesophageal echocardiography. Three groups were discriminated: (1) Patients with normal wall motion (n = 11), (2) Patients with one or more hypokinetic segments (n = 6), (3) Patients with one or more akinetic or dyskinetic segments (n = 6). The average ARI was similar in all groups (251 ± 3.7 ms, ±SEM). Dispersion of ARIs between the nine segments was significantly increased in the hypokinetic (84 ± 7.4 ms, p < 0.005) and akinetic/dyskinetic group (94 ± 3.5 ms, p < 0.0005) compared with the normal group (49 ± 5.1 ms), independent from the presence of myocardial infarction. Repolarization heterogeneity occurred primarily in the normally contracting regions of the hearts with abnormal wall motion. An almost maximal increased dispersion of repolarization was observed when there was only a single hypokinetic segment. We conclude that inhomogeneous wall motion abnormality of even moderate severity is associated with increased repolarization inhomogeneity, independent from the presence of infarction.
Collapse
Affiliation(s)
- Tobias Opthof
- Experimental Cardiology Group, Center for Heart Failure Research, Academic Medical Center Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Dössel O, Krueger MW, Weber FM, Wilhelms M, Seemann G. Computational modeling of the human atrial anatomy and electrophysiology. Med Biol Eng Comput 2012; 50:773-99. [PMID: 22718317 DOI: 10.1007/s11517-012-0924-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/21/2012] [Indexed: 01/08/2023]
Abstract
This review article gives a comprehensive survey of the progress made in computational modeling of the human atria during the last 10 years. Modeling the anatomy has emerged from simple "peanut"-like structures to very detailed models including atrial wall and fiber direction. Electrophysiological models started with just two cellular models in 1998. Today, five models exist considering e.g. details of intracellular compartments and atrial heterogeneity. On the pathological side, modeling atrial remodeling and fibrotic tissue are the other important aspects. The bridge to data that are measured in the catheter laboratory and on the body surface (ECG) is under construction. Every measurement can be used either for model personalization or for validation. Potential clinical applications are briefly outlined and future research perspectives are suggested.
Collapse
Affiliation(s)
- Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
31
|
Kuijpers NHL, Hermeling E, Bovendeerd PHM, Delhaas T, Prinzen FW. Modeling cardiac electromechanics and mechanoelectrical coupling in dyssynchronous and failing hearts: insight from adaptive computer models. J Cardiovasc Transl Res 2012; 5:159-69. [PMID: 22271009 PMCID: PMC3294221 DOI: 10.1007/s12265-012-9346-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/04/2012] [Indexed: 12/13/2022]
Abstract
Computer models have become more and more a research tool to obtain mechanistic insight in the effects of dyssynchrony and heart failure. Increasing computational power in combination with increasing amounts of experimental and clinical data enables the development of mathematical models that describe electrical and mechanical behavior of the heart. By combining models based on data at the molecular and cellular level with models that describe organ function, so-called multi-scale models are created that describe heart function at different length and time scales. In this review, we describe basic modules that can be identified in multi-scale models of cardiac electromechanics. These modules simulate ionic membrane currents, calcium handling, excitation-contraction coupling, action potential propagation, and cardiac mechanics and hemodynamics. In addition, we discuss adaptive modeling approaches that aim to address long-term effects of diseases and therapy on growth, changes in fiber orientation, ionic membrane currents, and calcium handling. Finally, we discuss the first developments in patient-specific modeling. While current models still have shortcomings, well-chosen applications show promising results on some ultimate goals: understanding mechanisms of dyssynchronous heart failure and tuning pacing strategy to a particular patient, even before starting the therapy.
Collapse
Affiliation(s)
- Nico H. L. Kuijpers
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Evelien Hermeling
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Peter H. M. Bovendeerd
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Filgueiras-Rama D, Martins RP, Mironov S, Yamazaki M, Calvo CJ, Ennis SR, Bandaru K, Noujaim SF, Kalifa J, Berenfeld O, Jalife J. Chloroquine terminates stretch-induced atrial fibrillation more effectively than flecainide in the sheep heart. Circ Arrhythm Electrophysiol 2012; 5:561-70. [PMID: 22467674 DOI: 10.1161/circep.111.966820] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Blockade of inward-rectifier K+ channels by chloroquine terminates reentry in cholinergic atrial fibrillation (AF). However, it is unknown whether inward-rectifier K+ channels and reentry are also important in maintaining stretch-induced AF (SAF). We surmised that reentry underlies SAF, and that abolishing reentry with chloroquine terminates SAF more effectively than traditional Na+-channel blockade by flecainide. METHODS AND RESULTS Thirty Langendorff-perfused sheep hearts were exposed to acute and continuous atrial stretch, and mapped optically and electrically. AF dynamics were studied under control and during perfusion of either chloroquine (4 µmol/L, n=7) or flecainide (2-4 µmol/L, n=5). Chloroquine increased rotor core size and decreased reentry frequency from 10.6±0.7 Hz in control to 6.3±0.7 Hz (P<0.005) just before restoring sinus rhythm (7/7). Flecainide had lesser effects on core size and reentry frequency than chloroquine and did not restore sinus rhythm (0/5). Specific IKr blockade by E-4031 (n=7) did not terminate AF when frequency values were >8 Hz. During pacing (n=11), flecainide reversibly reduced conduction velocity (≈30% at cycle length 300, 250, and 200 ms; P<0.05) to a larger extent than chloroquine (11% to 19%; cycle length, 300, 250, and 200 ms; P<0.05). Significant action potential duration prolongation was demonstrable only for chloroquine at cycle length 300 (12%) and cycle length 250 ms (9%) (P<0.05). CONCLUSIONS Chloroquine is more effective than flecainide in terminating SAF in isolated sheep hearts by significantly increasing core size and decreasing reentry frequency. Chloroquine's effectiveness may be explained by its inward-rectifier K+ channel blockade profile and suggest that reentry is important to maintain acute SAF.
Collapse
Affiliation(s)
- David Filgueiras-Rama
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Eckstein J, Schotten U. Rotors and breakthroughs as three-dimensional perpetuators of atrial fibrillation. Cardiovasc Res 2012; 94:8-9. [PMID: 22331500 DOI: 10.1093/cvr/cvs093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Srivatsa U, Cvt MC, Krishnamurthy S, Zhongmin LI, Qiu H, Chiamvimonvat N. Stretch and Inflammation- Their Relation to Fractionation of Electrograms in Atrial Fibrillation. J Atr Fibrillation 2011; 4:406. [PMID: 28496707 DOI: 10.4022/jafib.406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/19/2011] [Accepted: 10/14/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Inflammatory markers (IM) are elevated in atrial fibrillation (AF). However the relation of IM to substrate modificationinAF remains unclear.We sought to assess the relationship of IM to fractio ated atrial electrogram (FAE) in patients undergoing AF ablation. METHODS At baseline, left atrial (LA) pressure was recorded and peripheral blood was tested for IM. FAE mapping wasperformed before and after circumferential pulmonary vein and linear ablation (CPVA-L) and followed by FAEablation. Image processing was used to define the FAE areas. AF cycle-length (AFCL) was compared between baseline and after ablations from left atrial electrode. RESULTS Older patients had higher cytokine levels. FAE area at baseline (secondary FAE) negatively correlated with the levels of interleukin-6 (IL-6, R2= -0.97 and p=0.03) and interleukin-12p70 (IL-12p70, R2= -0.97 and p=0.03). In addition, a significant reduction in FAE area and index occurred after CPVA-L (p=0.0001). FAE after CPVA-L (primary FAE) correlated with left atrial pressure (LAP), [R2 0.5, (p=0.02)]. The AFCL (in msec) increased from 135 ± 41 to 149.5+30 (p=ns) after CPVA-L and further increased to 191.5 ± 60 (p=0.007) after FAE ablation. CONCLUSIONS There is a negative correlation of IL-6 and IL-12p70 to baseline FAE, suggesting a possibility of sequestration of these cytokines in left atrium. CPVA-L ablation reduces FAE area which when ablated increases AFCL, suggesting that these areas likely represent primary fragmentation due to rotors, triggered by atrial stretch as seen by the relation of left atrial pressure and post CPVA-L FAE.
Collapse
Affiliation(s)
- Uma Srivatsa
- Division of Cardiovascular Medicine, University of California Davis
| | - Mary Chavez Cvt
- Division of Cardiovascular Medicine, University of California Davis
| | | | - L I Zhongmin
- Division of Cardiovascular Medicine, University of California Davis
| | - Hong Qiu
- Division of Cardiovascular Medicine, University of California Davis
| | | |
Collapse
|
35
|
Di Martino ES, Bellini C, Schwartzman DS. In vivo porcine left atrial wall stress: Effect of ventricular tachypacing on spatial and temporal stress distribution. J Biomech 2011; 44:2755-60. [DOI: 10.1016/j.jbiomech.2011.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
36
|
Activation of I sac promotes atrial fibrillation initiation and perpetuation: is this a stretch? Heart Rhythm 2010; 8:437-8. [PMID: 21167317 DOI: 10.1016/j.hrthm.2010.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Indexed: 11/20/2022]
|